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Abstract— We propose an efficient path planning method
for an autonomous underwater vehicle (AUV) used for the
long-range and long-term ocean monitoring. We consider both
the spatio-temporal variations of ocean phenomena and the
disturbances caused by ocean currents, and design an approach
integrating the information-theoretic and decision-theoretic
planning frameworks. Specifically, the information-theoretic
component employs a hierarchical structure and plans the most
informative observation way-points for reducing the uncertainty
of ocean phenomena modeling and prediction; whereas the
decision-theoretic component plans local motions by taking
into account the non-stationary ocean current disturbances. We
validated the method through simulations with real ocean data.

I. INTRODUCTION AND RELATED WORK

Ocean (environmental) monitoring and sensing allow sci-
entists to gain a greater understanding of the planet and its
environmental processes related to, e.g., physical, chemical
or biological parameters [6]. We are interested in the problem
of collecting data about a scalar field of important envi-
ronmental attributes such as the temperature, salinity, and
chlorophyll content of the ocean.

A key challenge of this research lies in the sensing,
modeling, and predicting large-scale and spatially corre-
lated environmental phenomena, especially when they are
unknown and non-stationary [16]. Fig. 1 shows the variations
of salinity data in the Southern California Bight region gener-
ated by the Regional Ocean Modeling Systems (ROMS) [20].
In practice, many sensing applications require continuous
information gathering in order to provide a good estimate
of the state of the environment at any time [13].

Traditionally, environmental monitoring is done by de-
ploying static sensors which are used to collect data through
the area of interest [15]. However, if the monitoring region
is large, such a scheme is non-trivial to achieve due to
a trade-off between the quantity of sensing resources and
the quality of active sensing. Increasingly, a variety of
autonomous robotic systems including marine vehicles [7],
aerial vehicles [24], and ground vehicles [23], are designed
and deployed for the environmental monitoring. Particularly,
the autonomous underwater vehicles (AUVs) such as ma-
rine gliders are becoming popular due to their long-range
(hundreds of kilometers) and long-term (weeks even months)
monitoring capabilities [10, 14, 17].

We are interested in developing a path planning method
that guides an AUV to collect ocean data in the most
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Fig. 1. Ocean salinity data in the Southern California Bight region
observed by the Regional Ocean Modeling Systems (ROMS) [20]. A
brighter color indicates a larger value.

efficient way. By efficiency we mean the “informativeness”
of collected data (i.e., reduction of phenomena modeling
uncertainty) as well as the minimization of energy and time
used to collect the data. Such a planning framework is also
called informative path planning [13].

A variety of methodologies have been proposed to tackle
the informative path planning problem, among which the
most investigated approaches belong to the nonmyopic
framework. Formally, the term myopic means that the
path way-points are computed independently and greedily,
without considering the cost and consequences of making
observations in the future. Instead, a nonmyopic strategy
performs optimization and computes a series of way-points
by considering the effect of later time-steps [13]. Rep-
resentative nonmyopic approaches include, for example, a
recursive-greedy based algorithm [21] where the informa-
tiveness is generalized as a submodular set function built
on which a sequential-allocation mechanism is designed
in order to obtain subsequent way-points. This recursive-
greedy framework has been extended by taking into account
the avoidance of shipping lanes [2] and the diminshing
returns [3]. Differing from above mechanisms where the
path way-points are built by separate searching techniques
with the informativeness as some utility function, Low [11]
proposed a differential entropy based planning method in
which a batch of way-points can be obtained through
solving a dynamic program. Such a framework has been
extended to approaches incorporating mutual information [5]
and Markov-Information [12] optimization criteria. However,



these approaches are formulated with an assumption that
the underlying map is in a regular shape (e.g., a skewed
square) and the map is transected (sliced) column-wise, so
that each algorithmic iteration computes way-points within a
column and the navigation paths are obtained by connecting
those way-points among the pairwise adjacent columns. In
addition, there are also deterministic methods that optimize
paths/tours under certain constraints (e.g., see [22, 25]).
Deterministic optimization subject to path constraints is not
a focus of this paper.

Our work falls into the nonmyopic informative planning
category. We employ a Gaussian Process [19] to model an
underlying phenomenon, and utilize the mutual information
between visited locations and the remainder of the space to
characterize the amount of information collected. Related to
the practical ocean monitoring scenarios, we also consider
the AUV’s action uncertainty due to disturbances caused by
the non-stationary ocean currents, and extend the Markov
Decision Process (MDP) [18] in continuous space to control
AUV’s motion.

The paper makes the following contributions: we in-
troduce a long-term autonomy planning method that inte-
grates information-theoretic and decision-theoretic planning
frameworks, so that both the path informativeness and ac-
tion uncertainty are taken into account simultaneously; The
method adapts to the spatio-temporal variations of both
information (entropy) and disturbances. Formally, the high-
level information-driven planner uses a hierarchical structure
for characterizing hotspot regions and plans navigation way-
points based on the maximization of mutual information;
whereas the low-level disturbance-aware planner makes ac-
tion decisions within short-term and short-range to “reject”
the external disturbances; We validated the method through
extensive simulations with real ocean data and show that the
method not only maximizes information-gain but also saves
time and energy while exploring the non-stationary ocean.

II. PRELIMINARIES

A. Gaussian Process based Uncertain Field

To model spatial phenomena, a common approach in
spatial statistics is to use a rich class of Gaussian Pro-
cesses [16, 19, 21].

Formally, let W denote a set of sampling points describ-
ing the environmental phenomenon of interest. Each point
w ∈ W is a d-dimensional feature vector associating with
either a realized measurement zw if observed (sampled) or a
random measurement Zw if unobserved. Let set {Zw}w∈W
denote a GP, then for every finite subset of {Zw}w∈W , it
has a multivariate Gaussian distribution. The GP can be
fully specified by its mean µw , E(Zw) and covariance
σww′|θ , cov(Zw, Zw′ |θ) for all w,w′ ∈ W , where θ
parameterizes the covariance function which models the
spatial phenomenon (parameterization details are presented
later).

Assume we are given an observed data set D =
{(wi, Zwi

), i = 1 : |D|}, where D ⊂ W . GP can be
used to predict the mean and covariance of measurements

for any unobserved subset of U ⊂ W \ D. Based on the
property that every subset of {Zw}w∈W is a multivariate
Gaussian distribution, the joint distribution of ZU and ZD
can therefore be expressed as:(

ZD
ZU

)
∼ N

((
µD
µU

)
,

(
KDD KDU

KT
DU KUU

))
. (1)

where

KDD =
(
σww′|θ

)
|D|×|D|

, ∀w,w′ ∈ D,

KDU =
(
σww′|θ

)
|D|×|U |

, ∀w ∈ D,w′ ∈ U,

KUU =
(
σww′|θ

)
|U |×|U |

, ∀w,w′ ∈ U.

(2)

We then obtain the Gaussian posterior mean and covariance,

µU |D,θ = µ(WU ) +KT
DUK

−1
DD(ZD − µ(WD)),

ΣU |D,θ = KUU −KT
DUK

−1
DDKDU ,

(3)

where WU ,WD denote the set of sampling points in U,D
respectively, and ZD denotes the realized measurements of
D. Note that the posterior covariance matrix ΣU |D,θ is
independent of the measurements and it can be used to assess
the uncertainty with respect to the predicted measurements.

A GP’s behavior is controlled via specifying its prior
covariance (also known as kernel) σww′|θ, which describes
the relation between sampling points w and w′. A widely
adopted choice is the squared exponential kernel function:

σww′|θ = σ2
s exp(−1

2
(w − w′)TΛ−1(w − w′)) + σ2

nδww′

(4)

where Λ = diag(l21, . . . , l
2
d) and θ = {σ2

s , σ
2
n, l

2
1, . . . , l

2
d}

is the set of hyper-parameters specifying the property of
the w,w′ pairwise relation. The parameters l1 . . . ld are the
length-scales in each dimension of w and determine the level
of correlation between points (each li models the degree of
smoothness in the spatial variation of the measurements in
the ith dimension of the feature vector w). σ2

s and σ2
n denote

the variances of the signal and noise, respectively. δww′ is
the Kronecker delta function which is 1 if w = w′ and zero
otherwise.

B. Entropy and Mutual Information

To assess the level of measurement and prediction un-
certainty, we adopt the concept of entropy and mutual
information. In information theory, the entropy is defined to
quantify the uncertainty of random variables while the mu-
tual information is used to describe the mutual dependence
between two variables.

Formally, given a vector of sampling points A of size k,
the joint differential entropy of the corresponding vector ZA
of random measurements is

H(ZA) = −
∫
p(ZA) log p(ZA)d(ZA)

=
1

2
log
(

(2πe)k|ΣAA|
)
.

(5)



For arbitrary two vectors of sampling points A, B, the mutual
information between A and B can be expressed in terms of
(conditional) entropy

I(ZA;ZB) = I(ZB ;ZA) = H(ZA)−H(ZA|ZB) (6)

where the conditional entropy H(ZA|ZB) is

H(ZA|ZB) =
1

2
log
(

(2πe)k|ΣA|B |
)
. (7)

Because the field is modeled with a GP, the conditional
covariance matrix ΣA|B can essentially be calculated from
the posterior covariance matrix described in Eq. (3).

III. TECHNICAL APPROACH

Oftentimes the informative path planning starts with cer-
tain prior knowledge. For example, such knowledge may
come from other AUVs that have already traversed the region
or from remote sensing data [2]. With this prior knowledge,
the planner computes a path for the AUV which gives us
the most additional information (reducing predictive uncer-
tainty). As time elapses, the uncertainty of visited/measured
regions may increase again. The informative paths are thus
repetitively generated based on the spatially and temporally
varying ocean phenomenon.

A. Environment Representations & Methodology Framework

To represent the ocean environment, we discretize the
environment into a grid map with certain resolution. Each
grid at a location stores a mean value that predicts the
phenomenon interested as well as a variance that measures
the uncertainty of such prediction. We assume noise-free
observation and when a location is sampled/observed, the
variance of this grid is reduced to a very small value. In this
work, we call a region with prediction uncertainty larger than
certain threshold a hotspot. In many environmental processes,
hotspots distribute non-uniformly and adjacent hotspots may
be clustered as clouds, which are of particular interest to be
explored.

We characterize the most informative regions by using a
hierarchical structure, which is illustrated in Fig. 2. In greater
detail, we start with a grid map with a very low resolution
(i.e., the environment is tessellated into a few large regions),
and apply the information-driven planner to get the first
batch of observation points that are most informative. These
observation points are too large to be used as actual path
way-points, but they well characterize the hotspot regions
with the maximum informativeness. We then recursively
tessellate the hotspot regions and apply the information-
driven planner to get new batches of observation points at
finer resolutions. The process is repeated until the specified
bottom layer of the hierarchy is reached.

Note that, the basic informativeness maximization pro-
cedure (details are presented later) only outputs batches of
observation points, but does not convey any information of
paths which are a sequence of ordered way-points. Therefore,
we post-process these observation points with an existing
Travelling Salesman Problem (TSP) solver to generate a

Fig. 2. Hierarchical planning framework consisting of multiple layers. A
grid on a non-bottom layer can be expanded to a sub-map at a lower layer.

meaningful paths and route the AUV from its initial location
to visit all generated way-points with the minimized/shortest
path length.

Lastly, the low-level motion planner takes into account
the AUV’s motion uncertainty caused by the ocean current
disturbances. We map the discrete state space of MDP to
continuous motion space and integrate the external distur-
bance into the stochastic transition model. The way-points
generated from the information-driven planner are projected
onto a fine grid map representing MDP’s state space, and are
used as local goal states for the purpose of local decision-
making (navigation).

B. Hierarchical Information-Driven Planner
Given a desired total number of way-points n and a desired

number of layers l, a series of sub-maps can be constructed
hierarchically, as illustrated in Fig. 2. The target number of
way-points in each sub-map is nl = l

√
n. Let W (l)

k denote
the whole sampling set of a sub-map at layer l with an index
number k. The objective on each sub-map is to find a subset
of sampling points, P ⊂ W

(l)
k with a size |P | , nl, which

gives us the most information. It’s equivalent to finding the
maximum of the mutual information between the selected
subset and the rest (unobserved part) of the sub-map. Thus
the optimal P ∗ with maximal mutual information is

P ∗ = arg max
P∈X

I(ZP ;Z
W

(l)
k \P

) (8)

where X represents all possible combinatorial sets each
of which has a size nl in the sub-map. In order to find
P ∗, one way is to enumerate all possible combinations in
X . The time complexity of this naive approach would be
exponential and hence intractable in practice. Fortunately, P ∗

can be computed following a dynamic programming structure
which dramatically reduces the computational time. Details
are described below.

Let wi ∈W (l)
k denote an arbitrary sampling point at stage

i and wa:b represent a sequence of sampling points from
stage a to stage b. With Eq. (6), the mutual information
between P and the unobserved part at the final stage nl
can then be written as I(Zw1:nl

;Z
W

(l)
k \{w1:nl

}). This mutual
information can be expanded using the chain rule:

I(Zw1:nl
;Z
W

(l)
k \{w1:nl

}) = I(Zw1
;Z

W
(l)
k \{w1:nl

})

+

nl∑
i=2

I(Zwi
;Z

W
(l)
k \{w1:nl

}|Zw1:i−1
).

(9)

One can utilize this form of mutual information to calculate
wi step by step, however, at every stage i before the final



stage, the entire unobserved set W (l)
k \{w1:nl

} is not known
in advance, therefore we make an approximation

I(Zw1:nl
;Z
W

(l)
k \{w1:nl

}) ≈ I(Zw1 ;Z
W

(l)
k \{w1}

)

+

nl∑
i=2

I(Zwi ;ZW (l)
k \{w1,...,wi}

|Zw1:i−1),
(10)

which can be formulated with a recursive form, i.e., for
stages i = 2, . . . , nl, the value Vi(wi) of wi is:

Vi(wi) = max
wi∈W (l)

k \{w1,...,wi−1}
I(Zwi ;ZW (l)

k \{w1,...,wi}
|Zw1:i−1

)

+ Vi−1(wi−1),
(11)

and the base case for this recursion is:

V1(w1) = I(Zw1
;Z

W
(l)
k \{w1}

). (12)

Note the optimal way-point in the last stage nl is

w∗nl
= arg max
wnl
∈W (l)

k

Vnl
(wnl

). (13)

With the optimal solution in the last stage, w∗nl
, we can

backtrace all optimal sampling points till the first stage
w∗1 , and get the whole set of observation points w∗(k) =
{w∗1 , w∗2 , . . . , w∗nl

} in sub-map k. If these points are not gen-
erated from the sub-map at the bottom layer, we recursively
calculate finer observation points at each of their resided
regions in w∗(k). Otherwise the union of all obtained observa-
tion points,

⋃
{w∗(k)}, ∀k, are connected as a path/tour using

any existing TSP solver based on their spatial descriptions.
In this way, the traveling cost is minimized, and we show
in the experimental section that the information gain is also
better than the myopic greedy scheme.

The whole computational process for the hierarchical
information-driven planner is pseudo-coded in Alg. 1.

C. Disturbance-Aware Motion Planner

One unique feature for the AUVs lies in their (extremely)
uncertain motion outcomes. This is because the AUVs such
as marine gliders normally have an operating speed of
less than 0.5 m/s, which is at the same magnitude of the
ocean current speed. In such a scenario, tracking a pre-
planned trajectory is difficult, inefficient, or even impossi-
ble. Consequently, we design the low-level motion planner
based on the decision-theoretic framework, and develop an
adaptive disturbance-aware planning method built upon the
MDP [1, 18]. Specifically, the aforementioned high-level
information-driven planner produces a series of informative
path way-points. By setting the succeeding way-points as
the short-horizon goal states, the low-level disturbance-aware
motion planner generates policies for the local guidance.

Formally, let an MDP be M =< S,A, T,R >, where
S = {s} and A = {a} represent the state space and action
space, respectively. The stochastic transition model for an
agent can be modelled with Ta(s, s′) = Pr(s′|s, a), which is
a probability mass function that leads the agent to future state
s′ when it executes the action a from s. The forth element

Algorithm 1: Hierarchical Information-Driven Planner

1 Given the number of way-points n, and the number of
layers l, calculate the number of way-points in each
sub-map nl = l

√
n

2 /* from the top layer */
3 foreach w ∈W (l)

k do
4 V1(w) = I(Zw;Z

W
(l)
k \{w}

)

5 foreach i = 2 to nl do
6 foreach w ∈W (l)

k do
7 initialize Vi(w) = −∞

8 foreach wi−1 ∈W (l)
k do

9 foreach wi ∈W (l)
k \ {w1, . . . , wi−1} do

10 Vi(w) =
max(I(Zwi

;Z
W

(l)
k \{w1,...,wi}

|Zw1:i−1
) +

Vi−1(wi−1), Vi(w))

11 w∗nl
= arg max

wnl
∈W (l)

k

Vnl
(wnl

)

12 Backtrace to get w∗(k) , {w
∗
1 , w

∗
2 , . . . , w

∗
nl
}

13 if bottom layer has not been reached then
14 expand the next layer, go to line 3

15 With the set of final way-points
⋃
{w∗(k)}, calculate a

path/tour with an existing TSP solution

Ra(s, s′) is a positive reward scalar for performing action a
on s and reaching s′.

However, the standard model described above cannot be
implemented directly in our ocean monitoring scenario. This
is because: (1) MDP is built on discrete state space S,
whereas the robot motion is continuous; and (2) MDP’s
transition model Ta(s, s′) is a function of multiple resources
and can be time varying. We address these issues as follows.

First, in the continuous space, we re-define these variables:

• State x is the counterpart of s but in continuous state
space. When x coincides at s, we denote such state as
x(s) in continuous space. We can also map x back to
discrete space: x 7→ s if ||x − s|| is less than space
partition resolution;

• Local control reference a(s) at s is a vector and it is
mapped from MDP’s action a ∈ A;

• Vector d(s) expresses an environmental/external distur-
bance at s.

Second, there are two components that contribute to the
distribution of transition model Ta(s, s′). One is the control
of the robot, and the other is the external disturbances caused
by the ocean currents. Oftentimes the robot’s action/control
a(s) and external disturbance d(s) are addable (e.g., forces,
velocities) and produce a resultant/net vector r(s) = a(s) +
d(s) applied on the robot. We assume both the action and the
disturbance contain noises subject to independent Gaussian
distributions: a(s) ∼ N (µa,Σa), d(s) ∼ N (µd,Σd). Thus
the robot’s resultant state x after applying a(s) and being
disturbed by d(s) also follows a Gaussian distribution:

pa(x) = N (µx,Σx), (14)



where µx = µa + µd and Σx = Σa + Σd are the mean
and covariance of x, respectively. It is worth mentioning
that the MDP may produce multiple optimal actions (with
equal optimal value) at some state. In such a case, a mixture
distribution can be used,

p{a1,··· ,ak}(x) =

k∑
i=1

λipai(x) =
1

k

k∑
i=1

pai(x), (15)

where the weighting parameter λi for component PDFs are
identical as actions have the same optimal value. Let {a∗(s)}
be the set of optimal actions at state s, the transition model
thus can be expressed as

Ta(s, s′) = Pr
(
s′ | s, {a∗(s)},d(s)

)
. (16)

In practice, such discrete probability mass function is ap-
proximated by integrating Eq. (14) over discretized grids.

The value V (s) of a state s can be formulated as a
recursive equation

V ∗(s) = max
a∈A

∑
∀s′∈S

Ta(s, s′)
(
Ra(s, s′) + γV ∗(s′)

)
, (17)

where γ ∈ (0, 1) is an infinite-horizon discount factor for
discounting future costs at a geometric rate. From Eq. (17),
the optimal action policy π∗(s) can be obtained

π∗(s) = arg max
a∈A

∑
∀s′∈S

Ta(s, s′)
(
Ra(s, s′) + γV ∗(s′)

)
.

(18)

Employing Bellman’s principle of optimality avoids enu-
merating solutions naively, and we utilize the value itera-
tion [1] to calculate the optimal policy.

Note that, the disturbances d(s) caused by the ocean cur-
rents can be time-varying. The AUV updates the estimate of
d(s) periodically to catch up with the ocean dynamics. (For
example, a marine glider takes advantage of the forecasts by
the ROMS, and updates the ocean current information every
time when it surfaces.)

D. Time Analysis

Assume the number of grids in each sub-map is K, the
most expensive part for computing the differential mutual
information lies in the computation of matrix inversion and
determinant, which is approximately O(K2.4) for a matrix
of dimension K if state-of-the-art matrix manipulation algo-
rithms are used. The dynamic programming process requires
K2 and we have a total of nl way-points (equivalently nl
stages), thus the complexity for each sub-map is O(nlK

2)×
O(K2.4) = O( l

√
nK4.4). The total number of recursive sub-

maps is l
√
n
0

+ l
√
n
1

+ · · · + l
√
n
l−1

= n−1
l
√
n−1 . Therefore,

the total time complexity of our hierarchical information-
driven planner is O( (n−1) l

√
nK4.4

l
√
n−1 ). (Note that, the TSP is

NP-complete but there are numerous approximation solutions
with polynomial time complexities. Generally an efficient
TSP approximation solver costs O(n3) [9].)

The time complexity for the disturbance-aware motion
planner is bounded by O(τ |A||S||Ns|), where τ is the

number of iterations, |Ns| is the maximal number of states
that a state can transit to, and |A|, |S| are the numbers of
MDP actions and states, respectively. Since each goal state
is the succeeding way-point which is usually very close to
the AUV’s situated state, the value propagation horizon is
thus short and τ can be approximated at the same magnitude
of the propagation horizon (i.e., the number of propagation
“hops” between the two states).

IV. EXPERIMENTAL RESULTS

We validated our method in the scenario of ocean monitor-
ing. A simulator written in C++ was built in order to test the
proposed planning framework. The robot used in simulation
is an underwater glider with a simplified kinematic model.
The simulation environment was constructed as a two dimen-
sional ocean surface and we tessellated the environment into
grid maps. Our method applies for generic ocean phenomena.
In our experiments, we use salinity and ocean current data
observed in the Southern California Bight region. The raw
data is obtained from ROMS [20].

For the hierarchical information-driven planner, we use
the open-source library libgp [4] to model the latent phe-
nomenon. Then we compute the observation points and the
final sampling path following the procedure described in
Alg. 1. For the low-level disturbance-aware planner, we
represent the center of each grid as a state, where each
non-boundary state has a total of nine actions, i.e., a non-
boundary state can move in the directions of N, NE, E, SE,
S, SW, W, NW, plus an idle action (returning to itself). Time
varying ocean currents are external disturbances for the robot
and are represented as a vector field. Specifically, vector
û(x) denotes the easting velocity component (along latitude
axis) and vector v̂(x) denotes the northing component (along
longitude axis). The disturbance at x can thus be written as
d(x) = û(x) + v̂(x). As mentioned earlier, a continuous
state x can be mapped to a discrete tessellated state s ∈ S
within tessellation resolution.

Fig. 3 demonstrates a set of observation points that max-
imize mutual information. For better illustration, the map
contains only one layer and the layer is discretized into
10 × 10 grids. In the figures, the black regions represent
lands while the gray areas denote oceans. The yellow dots
and blue blobs represent prior sampling points and resultant
observation points, respectively. Fig. 3(a)–3(d) show vary-
ing numbers of observation points with some prior/known
samples that are set manually.

We compare our method with an existing popular method-
ology. Specifically, Guestrin et al [8] showed that, if the
discretization of space is fine enough and the GP satis-
fies mild regularity conditions, the solution is near optimal
for the myopic scheme where the observation points are
computed independently and greedily based on immediate
evaluations without considering the consequence of future
path way-points. Following the evaluation design of prior
works [5, 12], we thus compare the proposed method with the
myopic greedy framework. Fig. 3(e) and 3(f) are observation
points obtained from myopic greedy method (left) and the



(a) (b) (c) (d) (e) (f)

Fig. 3. Demonstration of observation points that maximize mutual information. (a)–(d) Varying numbers of observation points (blue blobs) with some
prior/known samples (yellow blobs); (e)(f) Observation points from myopic greedy method (left) and the proposed method (right). A comparison reveals
that our method generates observation points with a better field/exploration coverage.

(a) (b)

Fig. 4. Demonstration of hierarchical planning results with a total of 9
way-points. (a) The top layer of way-points (red) with priors on the top-left
and bottom-right corners. (b) A complete tour connecting the way-points
(blue) generated from each sub-map at the bottom layer. The green dot on
the shore represents AUV’s starting location.

proposed method (right), respectively. A close comparison
reveals that our method generates observation points with a
better field/exploration coverage.

Information-driven planning results from a two-layer
framework is shown in Fig. 4. In this example, we chose nine
way-points and discretized the first layer into a 6 × 6 grid
map. The red blobs are the observation points produced from
the first layer, based on which the second layer generates
a series of nine sampling points. By connecting with the
AUV’s starting location, a TSP tour is computed, as shown
in Fig. 4(b).

Fig. 5 shows statistical comparisons between the myopic
greedy approach and this proposed nonmyopic method. In
the figures, the x-axis corresponds to the number of plan-
ning stages, which is equivalent to the number of way-
points to be generated. Fig. 5(a) and 5(b) show that our
approach generates paths with much shorter path lengths.
We then compare the informativeness. Fig. 5(c) and 5(d)
reveal the total mutual information gained after completing
the whole paths. We can observe that our method is slighter
superior to the greedy strategy and the advantage becomes
more significant as the number of planning stages increases.
Additionally, the computational time is also investigated.
Fig. 5(e) and 5(f) show the running times as well as the
ratio between the greedy and our approach. Both the running
times grow linearly as the planning stages increase, and
our method is more costly due to the optimization process
using the dynamic programming. (All statistics are obtained
after 20 trials, where each time we randomly select some
prior observation locations.) Therefore, we can conclude that,
with some cost of the computational resource, our method
performs better than the myopic greedy method in terms of
the information gain, and much superior from the perspective
of saving traveling time and energy.

(a) 1 observation (b) 2 observations

(c) 1 observation (d) 2 observations

(e) (f)

Fig. 5. (a)-(d) Comparisons in terms of path length and mutual information
given one (left) and two (right) prior observations; (e) Running times of the
greedy and the proposed approaches. (f) The ratio of the running time of
our approach against the greedy method.

Finally, we validated the proposed approach with real
ocean current data. Fig. 6(a) depicts the raw ocean cur-
rent data obtained from ROMS. The ocean current data is
integrated into the disturbance-aware planning component
to construct the MDP’s stochastic transition model. Note
that the ocean currents are non-stationary, thus the planner
periodically updates the disturbance information at some
fixed period. With the navigation way-points output from
the hierarchical information-driven planner, the AUV follows
local decisions represented by the MDP’s optimal policy
until it finishes the current batch of way-points. As the latent
phenomenon is varying spatially and temporally, the planning
procedure repeats and continues as a long-term process. A
resultant trajectory of the AUV is illustrated in Fig. 6(b)–
6(d). The colormap in these figures denote the information-



(a) (b) (c) (d)

Fig. 6. Disturbance-aware planning of an AUV under non-stationary ocean currents. (a) Raw ocean currents predicted by ROMS; (b)–(d) the AUV follows
a series of way-points which cover the most uncertainty regions. The colormap depicts the variance of phenomenon prediction, where a warmer color
represents a smaller variance. Blue lines are ocean currents and read arrows denote the MDP action policy.

gain (informativeness), from which we can see that the
proposed method produces informative path that explores and
covers most of uncertain regions.

V. CONCLUSIONS

In this paper, we presented an informative path plan-
ning method for the long-term AUV ocean monitoring.
The method takes into account both the spatio-temporal
variations of ocean phenomena and the disturbances caused
by the ocean currents, and integrates components from
both information-theoretic and decision-theoretic frame-
works. Specifically, the information-theoretic component em-
ploys a hierarchical structure and plans the most informa-
tive observation way-points; whereas the decision-theoretic
component plans local motions by taking into account the
non-stationary ocean current disturbances. Our simulation
results show that the proposed approach is superior to the
myopic schemes in terms of both the information gains and
the vehicle’s energy cost.
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