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Abstract— We present an informative path planning method
for multiple autonomous underwater vehicles (AUVs) used for
long-range and long-term ocean monitoring. We consider the
spatio-temporal variations of ocean phenomena, and develop
an information-driven approach that computes the most infor-
mative observation way-points for reducing the uncertainty for
ocean modeling and prediction. The sampling paths of AUVs
are then formulated and solved through a matching graph based
routing method, which allows the vehicles to transit the obtained
informative way-points in an efficient and interference-free
way. We provide preliminary simulation results to validate the
proposed method.

I. INTRODUCTION

We propose an informative path planning method that
guides a team of autonomous underwater vehicles (AUVs)
to collect ocean data in an efficient way. By efficiency we
mean the “informativeness” of collected data (i.e., reduction
of phenomena modeling uncertainty) as well as the mini-
mization of energy and time used to collect the data.

We employ a Gaussian Process to model an underlying
phenomenon, and utilize the mutual information between
visited locations and the remainder of the space to character-
ize the amount of information collected. Such a formulation
allows us to obtain a set of “most informative” future obser-
vation/sampling points in the environment. However, these
observation points do not form a path (or multiple paths),
since no way-point traversal order/sequence information is
provided. Therefore, we employ and modify an existing
matching graph based routing method [2], which produces
a set of interference-free paths leading all AUVs to mutual
exclusive goal locations. At the lower level, we also consider
the AUV’s action uncertainty due to disturbances caused by
the non-stationary ocean currents, and extend the Markov
Decision Process in continuous space to control AUV’s
motion.

We validated the method through simulations with real
ocean data. The preliminary results show that, for a single
robot, the method not only maximizes information-gain but
also saves time and energy while exploring the non-stationary
ocean; for multiple robots, our method is flexible (i.e., with
tunable parameters) in generating interference-free routing
paths that are also time and energy efficient. Our ongoing
work involves further assessment of the information-gain
performance for different routing results tuned with different
path parameters.
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II. PRELIMINARIES

A. Gaussian Process based Uncertain Field

To model spatial phenomena, a common approach in
spatial statistics is to use a rich class of Gaussian Pro-
cesses [4, 6].

Formally, let W denote a set of sampling points describ-
ing the environmental phenomenon of interest. Each point
w ∈ W is a d-dimensional feature vector associating with
either a realized measurement zw if observed (sampled) or a
random measurement Zw if unobserved. Let set {Zw}w∈W
denote a GP, then for every finite subset of {Zw}w∈W , it
has a multivariate Gaussian distribution. The GP can be
fully specified by its mean µw , E(Zw) and covariance
σww′|θ , cov(Zw, Zw′ |θ) for all w,w′ ∈ W , where θ
parameterizes the covariance function which models the
spatial phenomenon (parameterization details are presented
later).

Assume we are given an observed data set D =
{(wi, Zwi

), i = 1 : |D|}, where D ⊂ W . GP can be
used to predict the mean and covariance of measurements
for any unobserved subset of U ⊂ W \ D. Based on the
property that every subset of {Zw}w∈W is a multivariate
Gaussian distribution, the joint distribution of ZU and ZD
can therefore be expressed as:(
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We then obtain the Gaussian posterior mean and covariance,
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−1
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DDKDU ,

(3)

where WU ,WD denote the set of sampling points in U,D
respectively, and ZD denotes the realized measurements of
D. Note that the posterior covariance matrix ΣU |D,θ is
independent of the measurements and it can be used to assess
the uncertainty with respect to the predicted measurements.

A GP’s behavior is controlled via specifying its prior
covariance (also known as kernel) σww′|θ, which describes
the relation between sampling points w and w′. A widely



adopted choice is the squared exponential kernel function:
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is the set of hyper-parameters specifying the property of
the w,w′ pairwise relation. The parameters l1 . . . ld are the
length-scales in each dimension of w and determine the level
of correlation between points (each li models the degree of
smoothness in the spatial variation of the measurements in
the ith dimension of the feature vector w). σ2

s and σ2
n denote

the variances of the signal and noise, respectively. δww′ is
the Kronecker delta function which is 1 if w = w′ and zero
otherwise.

B. Entropy and Mutual Information

To assess the level of measurement and prediction un-
certainty, we adopt the concept of entropy and mutual
information. Formally, given a vector of sampling points A
of size k, the joint differential entropy of the corresponding
vector ZA of random measurements is

H(ZA) = −
∫
p(ZA) log p(ZA)d(ZA)

=
1

2
log
(

(2πe)k|ΣAA|
)
.

(5)

For arbitrary two vectors of sampling points A, B, the mutual
information between A and B can be expressed in terms of
(conditional) entropy

I(ZA;ZB) = I(ZB ;ZA) = H(ZA)−H(ZA|ZB) (6)

where the conditional entropy H(ZA|ZB) can be calculated
via

H(ZA|ZB) =
1

2
log
(

(2πe)k|ΣA|B |
)
. (7)

Because the field is modeled with a Gaussian Process,
the conditional covariance matrix ΣA|B can essentially be
calculated from the posterior covariance matrix described in
Eq. (3).

III. TECHNICAL APPROACH

With some initial knowledge/condition, the planner com-
putes a path for the AUV which gives us the most additional
information (reducing predictive uncertainty). However, as
time elapses, the uncertainty of visited/measured regions may
increase again. The informative paths are thus repetitively
generated based on the spatially and temporally varying
ocean phenomenon.

A. Environment Representations & Methodology Framework

We discretize the ocean environment into a grid map with
certain resolution. Each grid at a location stores a mean
value that predicts the phenomenon interested as well as a
variance that measures the uncertainty of such prediction.
We assume noise-free observation and when a location is
sampled/observed, the variance of this grid is reduced to a
very small value.

Note that, the basic informativeness maximization pro-
cedure (details are presented later) only outputs a batch
of observation points, but does not directly produce paths.
Therefore, we post-process these observation points with our
multi-robot routing planner to generate multiple paths and
route each AUV from its initial location to the specified
destination locations.

B. Generation of Informative Sampling Way-points

Given a desired total number of n way-points we want to
generate. Let W denote the whole sampling set of a map.
The objective is to find a subset of sampling points, P ⊂W
with a size |P | = n, which gives us the most information. It’s
equivalent to finding the maximum of the mutual information
between the selected subset and the rest (unobserved part)
of the map.

Thus the optimal P ∗ with maximal mutual information is

P ∗ = arg max
P∈X

I(ZP ;ZW\P ) (8)

where X represents all possible combinatorial sets, each of
which has a size n in the map. In order to find P ∗, one
way is to enumerate all possible combinations in X . The
time complexity of this naive approach would be exponential
and hence intractable in practice. Fortunately, P ∗ can be
computed by following a dynamic programming structure
which dramatically reduces the computational time. Details
are described below.

Let wi ∈W denote an arbitrary sampling point at stage i
and wa:b represent a sequence of sampling points from stage
a to stage b. With Eq. (6), the mutual information between
P and the unobserved part at the final stage n can then be
written as I(Zw1:n

;ZW\{w1:n}). This mutual information can
be expanded using the chain rule:

I(Zw1:n ;ZW\{w1:n}) = I(Zw1 ;ZW\{w1:n})

+

n∑
i=2

I(Zwi
;ZW\{w1:n}|Zw1:i−1

).
(9)

One can utilize this form of mutual information to calculate
wi step by step, however, at every stage i before the final
stage, the entire unobserved set W \ {w1:n} is not known in
advance, therefore we make an approximation

I(Zw1:n ;ZW\{w1:n}) ≈ I(Zw1 ;ZW\{w1})

+

n∑
i=2

I(Zwi
;ZW\{w1,...,wi}|Zw1:i−1

),
(10)

which can be formulated with a recursive form, i.e., for
stages i = 2, . . . , n, the value Vi(wi) of wi is:

Vi(wi) = max
wi∈W\{w1,...,wi−1}

I(Zwi
;ZW\{w1,...,wi}|Zw1:i−1

)

+ Vi−1(wi−1),
(11)

and the base case for this recursion is:

V1(w1) = I(Zw1
;ZW\{w1}). (12)



Note the optimal way-point in the last stage n is

w∗n = arg max
wn∈W

Vn(wn). (13)

With the optimal solution in the last stage, w∗n, we can
backtrace all optimal sampling points till the first stage
w∗1 , and get the whole set of observation points w∗ =
{w∗1 , w∗2 , . . . , w∗n}. Note, these observation points contain no
path information, and paths will be computed with a routing
strategy presented in the following subsection.

C. Way-point Routing for Multi-Robot Systems

With the observation points obtained from Sect. III-B, the
interference-free routing paths for multiple vehicles to transit
these way-points are planned. This is essentially a multi-
source multi-goal (MSMG) path planning problem.

Let G = (V,E) be the graph used for routing the
AUVs, where vertex set V contains nodes represented by the
obtained observation points, and edge set E contains edges
with weights that measure the Euclidean distances (travel
costs) to nearby nodes (possibly within some predefined
radius). One efficient way to solve an MSMG is through
transforming G = (V,E) to a bipartite (matching) graph
G̃ = (V, V ′, Ẽ). Manipulation details are presented in [2].
The essence is recapitulated as follows.

Briefly, a bipartite graph G̃ has two sets of nodes V and
V ′, where V ′ is simply a copy of V such that |V | = |V ′|,
and an edge ẽ = (vi, v

′
j) ∈ Ẽ connects the vertices vi ∈ V

and v′j ∈ V ′ if there is an edge e = (vi, vj) ∈ E ∈ G. Edge
ẽ = (vi, v

′
j) is weighted the same as the counterpart edge

(vi, vj)

w̃(vi, v
′
j) = w̃(v′i, vj) = w(vi, vj) (14)

Besides that, a set of edges (vi, v
′
i) is also added with some

preset feasible weight w̃(vi, v
′
i) for all states except the starts

and goals (weight w̃(vi, v
′
i) can be scaled or tuned, see details

below).
A bipartite graph of this form well represents the as-

signment problem and can be solved by the Hungarian
Algorithm, which manipulates augmenting paths consisting
of matched and unmatched edges in order to find a solution
where each vertex in V is uniquely matched (assigned) to
a vertex in V ′ with the total cost minimized. Our MSMG
trajectories are obtained by transforming the resultant aug-
menting paths back to the routing paths on G via eliminating
all vertices except the goals from vertex set V ′. The concept
is illustrated in Fig. 1.

For multiple starting and ending vertices, multiple paths
can be obtained. Since each vertex can not simultaneously
be on more than one augmenting path (a property in
the Hungarian algorithm), the resulting routing paths are
interference-free with no shared vertex. Note that, however,
these interference-free MSMG paths do not transit all nodes
in V (different from routing strategies such as the Traveling
Salesman Problem). A useful property of the MSMG method
lies in that the paths can be tuned (adjusted) via manipulating
the weights w̃(vi, v

′
i) of the corresponding vertical edges in

(a) (b)
Fig. 1. Bipartite graph in the form of 3D mesh, where V = {v1, v2, v3},
V ′ = {v′1, v′2, v′3}. Starting nodes (i.e., AUVs’ locations) are separately put
in set Vs = {vs}; similarly, the goal nodes are in set Vg = {vg}. In this
example, we have only one start node and one goal node. (a) Matched edges
are in red bold, others are unmatched edges; (b) The number of matched
edges increases by one after switching edge states of the augmenting path
vs—v′1—v1—v′2—v2—vg . The projected routing path is vs—v1—v2—
vg , the vertices of which are only in routing graph G. The path is illustrated
by dashed arrows in the top layer.

(a) (b)

Fig. 2. (a) The sampling region along the coast of southern California. (b)
The way-points (blue) with priors in the corners (yellow).

Fig. 1, as long as the value of w̃(vi, v
′
i) is within some

feasible range [2]. Intuitively, as the weights change, the
paths begin to involve more vertices and become more
winding, which allows the AUVs to traverse more nearby
observation points along their paths.

IV. EXPERIMENTAL RESULTS

We provide initial simulation results. The robot used in
simulation is an underwater glider with a simplified kine-
matic model. The simulation environment was constructed
as a two dimensional ocean surface and we tessellated the
environment into grid maps. We use salinity and ocean cur-
rent data observed in the Southern California Bight region.
The raw data was obtained from ROMS [5].

To control vehicles’ motion, the high-level path planner
described in Sect. III produces a set of MSMG paths. By
setting the succeeding way-points as the short-horizon goal
states, we developed a low-level Markov Decision Process
based motion planner in order to generate disturbance-aware
policies for the local guidance.

Fig. 2 demonstrates a set of 15 observation points that
maximize mutual information in the map. In Fig. 2(b), the
black regions represent lands while the gray areas denote
oceans. The yellow dots and blue blobs represent prior sam-
pling points and resultant observation points, respectively.

Following the evaluation design of prior works [1, 3],
we compare our proposed method with the myopic greedy
framework. We first evaluated the performance of single
robot planning. Fig. 3 shows statistical comparisons between
the myopic greedy approach and this proposed nonmyopic
method. In the figures, the x-axis corresponds to the number



(a) 2 observations (b) 2 observations

Fig. 3. (a)(b) Comparisons in terms of path length and mutual information
given two prior observations.

of planning stages, which is equivalent to the number of way-
points to be generated. Fig. 3(a) shows that our approach
generates paths with much shorter path lengths. We then
compare the informativeness. Fig. 3(b) reveals the total
mutual information gained after completing the whole paths.
We can observe that our method is slighter superior to the
greedy strategy. Therefore, our method performs better than
the myopic greedy method in terms of the information gain,
and much superior from the perspective of saving traveling
time and energy.

With the navigation way-points output from the
information-driven planner, the AUV follows local decisions
represented by the MDP’s optimal policy until it finishes the
current batch of way-points. Since the GP based ocean model
is temporally varying, i.e., the uncertainty of an observed
point is increasing after an AUV finishes its observation
at this location and moves to somewhere else, therefore,
we simulate such a property by incorporating the fact that
the observation uncertainty increases as time elapses. A
resultant trajectory of the AUV is illustrated in Fig. 4.
The colormap in these figures denote the information-gain
(informativeness), which implies that the proposed method
produces informative path that explores and covers most of
uncertain regions. We can also see that the uncertainty of
explored regions in fig. 4(a) gradually increases as the AUV
reaches the later time frames in fig. 4(b) and fig. 4(c). Such
a time-varying uncertainty model is exactly the motivation
for the long-term monitoring.

We then tested the MSMG routing strategy for scenarios
with multiple AUVs. As described in Sect. III-C, adjusting
weights on the vertical edges (vi, v

′
i) of the 3D matching

graph will “perturb” the paths to involve differing number
of way-points. Formally, for each vertex vi, we re-initialize
the weight, w̃(vi, v

′
i), as the least cost among all outgoing

edges from vi, and use a scaling/tuning parameter λ to scale
the weight w̃(vi, v

′
i). Fig. 5(a)–5(c) show different results

when different λ values are set. We can observe that, with
a larger λ, the paths are more winding and allow the AUVs
to transit more observation way-points.

V. CONCLUSIONS

In this paper, we presented an informative path planning
method for long-term multi-AUV ocean monitoring. By
taking into account the spatio-temporal variations of ocean
phenomena, we developed an information-driven approach
that computes the most informative observation way-points

(a) (b) (c)

Fig. 4. Demonstration of a planning result with a total of 10 way-points and
one robot. (a)–(c) the AUV follows a series of way-points which cover the
most uncertainty regions. The colormap depicts the variance of phenomenon
prediction, where a warmer color represents a smaller variance. Blue lines
are ocean currents and red arrows denote the MDP action policy. Uncertainty
of sampled points increases as the time evolves. Such temporally varying
uncertainty model requires repetitive sampling operations in the long term.

(a) (b) (c)

Fig. 5. Demonstration of planning results for 2 robots. (a)–(c) Twos paths
connecting the way-points (blue) generated from our multi-robot routing
planner with different λs (0, 0.5, 1, respectively). The green dot represents
AUV’s starting location.

that aim at minimizing the ocean model and prediction
uncertainty. The sampling paths of AUVs are then formulated
and solved through a matching graph based routing method,
which allows the vehicles to transit the obtained informative
way-points in an efficient and non-conflict way. We pro-
vide preliminary simulation results to validate the proposed
method. In future, we plan to further investigate and assess
the information-gain performance for different routing results
tuned with differing path parameters.
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