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Abstract To gain a better understanding of environmental processes, we are in-
terested in the problem of deploying multi-robot systems for efficient collection of
environmental data. For long-term autonomy, enabling persistent monitoring, it is
important to consider the spatio-temporal variations of environmental phenomena.
We develop a multi-robot persistent path planning method that reduces uncertainty
in the environmental model. Our framework contains two components: the first com-
ponent computes potential observation points that minimize model prediction uncer-
tainty, and the second component uses this for online planning of multi-robot paths,
while also taking into account the efficiency of information collection. We vali-
dated our method via simulations, and the results show that it produces multi-robot
routing paths that are conflict-free, informative, and adaptive to the environmental
dynamics.

1 Introduction

We are interested in the problem of deploying multiple robots for efficient collection
of environmental data, to gain a greater understanding of environmental processes.
In particular, we are interested in reconstruction of physical, chemical or biological
scalar fields. One example is the use of autonomous underwater vehicles (AUVs)
for ocean monitoring, to map physical or biological properties of the ocean, such
as temperature, salinity, and chlorophyll contents. Environmental monitoring is in-
herently a continuous and persistent task, because many of the underlying environ-
mental processes vary both spatially and temporally. Therefore, in order to obtain a
good estimate of the state of the environment at any time, robots need to perform
persistent monitoring [15, 16].
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One aspect that sets apart persistent monitoring from conventional path planning
methods, is that travel costs (e.g. travel time and distance) are not the only concern,
because the robots are performing the task in a continuous, lasting manner. Instead,
the objectives of a planning framework for multi-robot, long-term autonomy mis-
sions, are:

• Maximization of information gain: At any time, the robots’ observations along
their paths can not cover the entire environmental space. We will need to model
and predict continuous environmental phenomena with these limited observa-
tions, which inevitably causes uncertainty. Any planning approach should thus
minimize model uncertainty, or equivalently, maximize information gain.

• Multi-robot coordination: Any paths planned for all robots should resolve po-
tential conflicts. For example, two paths should avoid cross or transit the same
location. Furthermore, each robot’s path should collaboratively optimize for the
global objective, namely the collective informativeness of the model.

• Adaptive and online routing: The robots should be capable of adapting to the
collected data. Given the spatio-temporal variability of the environmental fields,
it is crucial that the paths are adapted as the robots progress. This requires online
routing of the vehicles; dynamic goals and re-planning of paths.

We use Gaussian Process (GP) regression to model the phenomenon of inter-
est [17]. To characterize the amount of information collected, we utilize the mutual
information between visited locations and the remainder of the space [19]. This al-
lows us to obtain a set of “most informative” future observation points. However,
these observation points do not yet form a path (or multiple paths), because no
routing information is provided. Many traditional path planning methods require all
routing goals to be determined in advance. However, such goals are unrealistic for
long-term autonomy path planning, because vehicles need to continuously visit infi-
nite number of goals. Therefore, we extend an existing matching graph-based rout-
ing method [12], such that the routing destinations can be dynamically determined,
and conflict-free paths can be adaptively computed, while taking into account the
information gain.

2 Related Works

Planning methodologies designed for the spatio-temporal environmental monitor-
ing are often called informative path planning, because the objective is to max-
imize the collected information (informativeness) [1]. Representative informative
path planning approaches include approaches based on recursive-greedy path plan-
ning using mutual information on top of Gaussian Process regression [2, 15, 19],
where the informativeness is generalized as submodular functions built on which
a sequential-allocation mechanism is designed in order to obtain subsequent way-
points. Recently, a differential entropy based method was proposed, in which a batch
of waypoints can be obtained through solving a dynamic program [3, 13]. However,
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the framework is formulated with an assumption that the underlying map is tran-
sected (sliced) column-wise, so that each algorithmic iteration computes waypoints
within a separate column and the navigation paths are obtained by connecting those
waypoints among the pairwise adjacent columns. In recent works, we have extended
such a framework by allowing the path to be searched and computed across the en-
tire space at any stage [14]. In this work, we further extend our approach to persistent
monitoring tasks for multi-robot systems.

Recent works that investigate informative path planning approaches for persistent
ocean monitoring include [9, 16]. In [16], an active sensing based method was pro-
posed, which uses a criterion that trades off between gathering the most informative
observations for estimating unknown local regions, and predicting the phenomenon
given the current estimates of those regions. To capture and adapt to the environ-
ment’s model dynamics, we plan paths within short time horizons. In [9], paths were
also planned over short time horizons, using receding horizon planning. However,
they used a different metric, and they did not consider multi-robot coordination.

Other related works include the Orienteering Problem (OP). The OP is a routing
problem in which the goal is to determine a subset of nodes to visit, and in which
order, such that the total collected score is maximized, and the given time budget
is not exceeded [7, 8]. Heuristics have been designed to approximate this NP-hard
problem in an efficient way [5, 6, 11]. However, one drawback of approaching this
problem as an OP lies in that the time limit or cost can be hard to determine for
long-term autonomy scenarios. In this paper, we extend an efficient matching graph
based planning method by strategically integrating metrics of information gain and
travel cost. We compare our method to a popular heuristic for the OP, and our re-
sults show that our method performs better for persistent multi-robot environmental
monitoring.

3 Informative and Adaptive Planning Framework

Environmental phenomena vary not only spatially but also temporally. We regard the
temporal process as a sequence of short horizons of equal length, and assume that
within each short horizon the latent environmental phenomena are time-invariant.
This allows us to eliminate the temporal parameter and focus on constructing the
environment’s spatial properties, using existing methods from spatial statistics, such
as Gaussian Processes (GPs). In this section, we explain how a set of potential infor-
mative observation points can be obtained from the GP. Following that, we construct
routes over observation points using conflict-free paths. The observations along the
paths are then used as a prior for generating a new set of potential observation points
for the next time horizon. Note that these priors are time-varying, which means that
the entropy (model uncertainty) of earlier observed points grows again gradually af-
ter the last observation. Therefore we need to be able to update the routing solution
for each new horizon. Our observation point selection procedures thus repeat, and
routes are updated, such that we carry out environmental monitoring persistently.
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3.1 Gaussian Process Regression and Information Gain

We model the environment using Gaussian Process (GP) regression [17], similar to
previous works [13, 19]. A GP’s behavior is specified by its prior covariance func-
tion (also known as kernel), which describes the relation between two independent
data points. The GP is further defined by its hyperparameters, which can be esti-
mated using training data, typically through maximum likelihood estimation [17].
In our implementation, we use the squared exponential automatic relevance deter-
mination kernel function. The mean and variance of each sample location can be
predicted via the GP. The variance represents the uncertainty of the predicted data
value, which can be used to find future observation points.

To assess prediction uncertainty, we use mutual information as a metric. In in-
formation theory, the mutual information is used to describe the mutual dependence
between two variables. It is derived from the concept of entropy which is defined to
quantify the uncertainty of random variables. For two arbitrary vectors of sampling
points A, B, the mutual information between A and B can be expressed in terms of
(conditional) entropy

I(ZA;ZB) = I(ZB;ZA) = H(ZA)−H(ZA|ZB) (1)

where Z represent random variables, H(ZA) is the entropy of ZA, and the conditional
entropy H(ZA|ZB) can be calculated via

H(ZA|ZB) =
1
2

log
(
(2πe)k|ΣA|B|

)
. (2)

The conditional covariance matrix ΣA|B can be calculated from the GP’s posterior
covariance matrix.

3.2 Generating Informative Observation Points

Let W denote the sampling set of the grid map, and let n be the desired number
of observation points. The objective is to find a subset of sampling points, P ⊂W
with a size |P| = n, which gives us the most information for our model. This is
equivalent to the problem of finding observation points that maximize the mutual
information between observed and unobserved locations of the map. The optimal
subset of sampling points, P∗, with maximal mutual information is

P∗ = argmax
P∈X

I(ZP;ZW\P) (3)

where X represents all possible combinatorial sets, each of which is of size n. P∗

can be computed efficiently using a dynamic programming approach [14].
The dynamic programming approach is as follows: Formally, let wi ∈ W de-

note an arbitrary sampling point at stage i and wa:b represent a sequence of sam-
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pling points from stage a to stage b. Following Equation (9), the mutual informa-
tion between P and the unobserved part at the final stage n can then be written as
I(Zw1:n ;ZW\{w1:n}). This mutual information can be expanded using the chain rule:

I(Zw1:n ;ZW\{w1:n}) = I(Zw1 ;ZW\{w1:n})+
n

∑
i=2

I(Zwi ;ZW\{w1:n}|Zw1:i−1). (4)

One can utilize this form of mutual information to calculate wi step by step. How-
ever, at every stage i before the final stage, the entire unobserved set W \ {w1:n} is
not known in advance, therefore we make an approximation:

I(Zw1:n ;ZW\{w1:n})≈ I(Zw1 ;ZW\{w1})+
n

∑
i=2

I(Zwi ;ZW\{w1,...,wi}|Zw1:i−1), (5)

which can be formulated in a recursive form, i.e. for stages i = 2, . . . ,n, the value
Vi(wi) of wi is:

Vi(wi) = max
wi∈W\{w1,...,wi−1}

I(Zwi ;ZW\{w1,...,wi}|Zw1:i−1)+Vi−1(wi−1), (6)

with the base case for this recursion: V1(w1) = I(Zw1 ;ZW\{w1}). Note that the opti-
mal waypoint in the last stage n is

w∗n = argmax
wn∈W

Vn(wn). (7)

With the optimal solution in the last stage, w∗n, we can backtrace all optimal sam-
pling points (optimal with respect to the approximation made in Equation (9)) until
the first stage w∗1, and get the whole set of observation points w∗ = {w∗1,w∗2, . . . ,w∗n}.

3.3 Planning Multi-Robot Paths among Observation Points

Given the most informative observation points, we can then plan the paths for each
robot. Our path planning framework differs from traditional path planning methods
in three ways: First, we need to plan paths for multiple robots, where each path
starts from the robot’s current location and ends at a unique destination, and these
paths should not interfere (e.g. no intersection). Second, the metric for path quality
is not only the travel distance/time (a minimization problem), but combined with
information gain (a maximization problem). In our work, we evaluate the path qual-
ity via the information gain in unit time, i.e. the relative information gain given the
time needed to collect such information. Third, the planning needs to adapt to the
spatio-temporal dynamics. Observation points with time-varying priors are gener-
ated online, and the routing of paths needs to be able to adapt to such variations. We
address these problems as follows.
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Multi-Robot Conflict-free Path Planning: We use a graph G = (V,E) to de-
scribe the possible paths between observation points V . Each point vi ∈ V is
weighted by its information gain τ(vi). Each edge ei j = (vi,v j) ∈ E is weighted by
w(vi,v j), the travel time between the two ending vertices. Motivated by the embed-
ding of both vertex weight and edge weight as well as the capacity for describing
multi-agent assignment, we opt to extend our routing method based on bipartite
graphs (also called matching graphs) [12], to plan the multi-robot informative and
conflict-free paths. In essence, the bipartite graph G̃ = (V,V ′, Ẽ) is an augmented
version of the standard graph G = (V,E), if we regard it in the way that each vertex
weight in G is uniquely transformed to some edge weight in G̃ (such that all ver-
tex weights are eliminated). Such a bipartite graph can well represent the matching
(assignment) problem, and the optimal matching solution to it can be converted and
interpreted as a routing path on the standard graph. We briefly describe the idea as
follows, more details can be found in [12].

(a) (b)

Fig. 1 Bipartite graph in the form of a 3D mesh, where V = {v1,v2,v3}, V ′ = {v′1,v′2,v′3}. The
starting nodes (i.e. robots’ current locations) are put in a set Vs = {vs}; similarly, the goal nodes
for each robot are in set Vg = {vg}. In this example, we have only one start node and one goal
node for each robot, and these are mutually exclusive. (a) Matched edges are in red bold, others
are unmatched edges; (b) Optimal matching solution after running the Hungarian Method. The
projected routing path is vs—v1—v2—vg, the vertices of which are only in routing graph G. The
path is illustrated by dashed arrows in the top layer.

A bipartite graph G̃ has two sets of nodes, V and V ′, where V ′ is simply a copy of
V ∈G such that |V |= |V ′|, and an edge ẽi j = (vi,v′j)∈ Ẽ connects the vertices vi ∈V
and v′j ∈V ′ if there is an edge ei j = (vi,v j) ∈ E ∈ G. Edge ẽi j = (vi,v′j) is weighted
the same as the counterpart edge ei j = (vi,v j), i.e., w̃(vi,v′j) = w̃(v′i,v j) = w(vi,v j).

Figure 1 shows an example of bipartite graph. If we insert some starting vertices
Vs and some goal/ending vertices Vg, a new matching problem is formed and we
can employ the Hungarian Method [10] (with time complexity O(n3)) to solve it.
The output is a mapping that matches each vi ∈ V ∪Vs to a unique v′j ∈ V ′ ∪Vg.
The matched pair (vi,v′j) form a matched edge in G̃. Matched edges in Figure 1
are colored in red. To retrieve a routing path, all vertices on the matched edges
except those in the set V ′, form the path waypoints. For instance, in Figure 1(b), the
path starting from vs and ending at vg is: vs—v1—v2—vg. Note that, from multiple
starting vertices Vs to multiple pre-specified goal nodes Vg, multiple paths can be
obtained. Because each vertex can not simultaneously be on more than one matched
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edge, the retrieved routing paths are conflict-free with no shared vertices. The paths
do not cross or overlap due to the matching optimization mechanism [20].

Incorporating Informativeness: A useful property of the bipartite graph method
is that paths can be tuned. This can be achieved by manipulating the weights w̃(vi,v′i)
of the corresponding vertical edges in Figure 1. The path tuning feature allows us to
incorporate the information gain metric. Specifically, we set each weight:

w̃(vi,v′i) = λiw̃0(vi,v′i)

λi = f (τ(vi, t)),
(8)

where w̃0(vi,v′i) is initialized to be the minimum weight among all the outgoing
edges, and 0 ≤ λi ≤ 1 is a parameter for scaling the importance of the information
gain versus the travel cost. λi is a function of τ(vi, t), which is the information gain
for vertex vi ∈ G at time t. Function f is empirically pre-defined to express how the
raw information gain should be transformed to reflect the importance. For example,
f can be a linearly increasing function. Intuitively, as λ increases, the paths become
more winding and include more nearby informative observation points.

Adaptive Routing for Spatio-Temporal Dynamics: We want our path planning
approach to be able to adapt to the spatio-temporal dynamics, and to handle online
routing. Pre-defining routing goals for all future horizons is impractical, because
the persistent monitoring task can be infinitely long. Instead, we want the planner
to determine the goals online. We achieve this by further extending the above rout-
ing mechanism to address the online goal selection and path optimization problem.
Specifically, we start by setting V as an empty set, Vs as the current locations of all
robots, and Vg as all potential observation points, within the current time horizon.
Then we solve the matching problem, which matches Vs to a set, say, V ′g ⊂Vg. Note
that this step is optimal only with respect to the one step planning horizon since it
does not account for the future observation points. Therefore, we manipulate the sets
by letting V =V ∪V ′g, Vg =Vg \V ′g and solve the new matching again. By repeating
this process, vertices are incrementally moved from Vg to V , and the sequentially
obtained vertices in V ′g form the routing paths, with the last waypoint at the end of
each path as its routing destination. Algorithm 1 shows this incremental adaptive
planning in pseudo-code.

4 Experimental Results

Experimental Set-Up: We validate our method through simulations, using the
scenario of ocean environmental monitoring. The simulation environment is con-
structed as a two-dimensional ocean surface which is tessellated into a grid map.
We use salinity and ocean currents data, observed in the Southern California Bight
region, obtained via ROMS [18]. Figure 2(a) and 2(b) show visualizations of these
data. The grid map resolution, as well as the hyperparameters of GP, are manually
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Algorithm 1: Incremental Adaptive Path Planner
1 Given the starting locations of k robots s = {s1, . . . ,sk}, the sampling waypoints

w = {w1, . . . ,wn}, and the planning horizon, h.
2 Initialize, V = /0,Vs = s,Vg = w,V ′g = /0
3 for t = 1 to h do
4 V =V ∪V ′g, Vg =Vg \V ′g
5 Build a bipartite graph G̃ = (V,V ′,E), where ẽi j = (vi,v′j) ∈ E, w̃(vi,v′j) = d(vi,v′j), and

the Euclidean distance d(vi,v′j) represents travel cost.
6 Parameterize V : w̃(vi,v′i) = λi min∀v′j w̃(vi,v′j)

7 Insert Vs, Vg to the above graph as starting/ending vertices, then solve the matching
problem using the Hungarian Method.

8 Let V ′g be the resultant matchings.

9 Transform V ′g to k routing paths as described in Figure 1(b)

(a) (b) (c)

Fig. 2 (a) Ocean temperature field near southern California generated by ROMS. (b) Ocean cur-
rents predicted by ROMS. (c) Potential observation points (blue) with priors in the corners (yel-
low).

tuned and pre-set, such that approximately 30 observation points from the entire
space can be generated and they can well cover the space. The robot used in simu-
lation is an underwater AUV (marine glider).

We use a hierarchical model for motion planning, with two levels. At the higher
level, the robots follow the planned paths presented in Sect. 3. At the lower level, the
robots follow disturbance-aware motion policies, built on Markov Decision Process
(MDP) (formulation details of the low level planner can be found in [14]). These
motion policies let us integrate external disturbances (such as ocean currents) into
the stochastic transition model. Therefore we take into account the robots’ motion
uncertainty caused by the ocean currents. By setting succeeding path waypoints as
the short-horizon goal states, the low-level motion planner generates policies for
local guidance.

Figure 2(c) demonstrates a set of 10 observation points that maximize mutual
information in the map. In the figure, the black region represents land and the gray
area represents the ocean. The yellow dots in the corners represent prior observation



Multi-Robot Informative and Adaptive Planning 9

(a) (b) (c) (d) (e)

Fig. 3 Intermediate results of our multi-robot routing process. The routing points are incrementally
and adaptively chosen during the process, as illustrated from (d) and (e).

(a) (b) (c) (d)

Fig. 4 Demonstration of environmental monitoring with 2 AUVs. The regions with warmer col-
ors indicate less uncertainty (high confidence), whereas regions with colder colors indicate high
uncertainty (low confidence). For the purpose of clarity, only one robot’s MDP policy map (small
arrows) is shown.

points, and the blue blobs are the resultant observation points. With the observation
points obtained, we run the path planner described in Algorithm 1 to generate the
informative and adaptive paths for the multi-robot system. As shown in Figure 3,
the routing paths are incrementally and adaptively augmented in each time step.
Figure 3(d) and 3(e) show that the paths are adapted to avoid conflicts.

Results: Figure 4(a) through 4(d) shows the simulation results for two robots.
Each robot follows its local decision-policy computed from an MDP model, com-
bining both the ocean current disturbances and the reward information for the next
waypoint. The colormap in these figures denotes the significance of uncertainty (red
= low uncertainty, green = high uncertainty), from which we can see that the pro-
posed method produces informative paths that explore and cover the regions with
high uncertainty. As noted previously, the information gain is time-varying, i.e. the
uncertainty of an observed point starts increasing again after a robot finishes its ob-
servation at this location and moves to somewhere else. Therefore, we incorporate
the fact that the uncertainty of predictions increases as time elapses. Figure 4(c)
and 4(d) show us that the earlier explored regions become uncertain again as time
elapses, and that the robots always explore the most uncertain parts of the environ-
ment, as the environment changes.
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Fig. 5 Average computation time for different numbers of deployed robots and planning horizons.

Computational performance: We also evaluated the computational perfor-
mance of our approach. Figure 5 shows the computation times given different num-
bers of deployed robots and planning horizons, as run on a computer with an 8-core
2.6GHz CPU and 12GB DDR3 memory. All statistics are mean values of 20 tri-
als for each setting. In every simulation, 30 observation points are generated, and
the prior data are randomly selected points. We can see that the computation time
generally grows polynomially with the planning horizon increases, for each fixed
number of robots. This can be justified by inspecting Algorithm 1. We can see that
the bottleneck step is the Hungarian Method, whose time complexity is O(n3) and
therefore the overall complexity is polynomial. The growth in computation time is
mostly due to the generation of observation points. Table 1 shows the comparison of
computation time between the generation of observation points, and the multi-robot
path planning. Three robots are deployed and the planning horizon for path planning
is set to cover as many observations points as possible. The informative observation
point generation part is more costly due to the large search space; the observation
point algorithm needs to evaluate all grid points in the grid map, whereas the path
planning method only needs to compute routing solutions from the subset of ob-
tained observation points.

Stages = 5 10 15 20 25 30
Observation
points

5.5752 12.8784 20.7266 28.6449 36.9960 47.2544

Path
planning

0.0001 0.0007 0.0038 0.0070 0.0216 0.0659

Table 1 Computation time (sec) for two components of our informative path planning approach:
finding informative observation points, and calculating a path between these.

To assess the quality of planned paths, we compare our method with an algorithm
that solves the Orienteering Problem (OP). The OP solver aims at maximizing the
collected score along the paths within some given time limits, thus it also considers
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(a) (b)

(c) (d)

Fig. 6 Two different scenarios used to compare results between our method (green (a), (c)) and
the OP algorithm (red, (b), (d)). Two robots are deployed. The circled nodes indicate their starting
locations, and the squared nodes the ending locations. The size of each node reflects their signifi-
cance of score. (a) and (b) compare performance on artificially created observation points, (c) and
(d) compare performance on a skewed score distribution.

two competing metrics (score collection and travel time). We implemented a well-
known heuristic called the centre-of-gravity heuristic [7], which combines other
local refining heuristics such as the well-known 2-Opt heuristic [4]. One drawback
of such OP solution lies in that both the ending vertices and the time limits must
be specified. In contrast, our method plans the paths with their goals adaptively, in
order to achieve better scores. To address the goal specification requirement for the
OP, we first run our method and obtain the goals, then we assign these obtained
goals to the centre-of-gravity OP. The time limits fed to the OP are the recorded
time of each path computed from our method.

Figure 6 provides two sets of results for our proposed planning method (green
paths) and the orienteering algorithm (red paths). The score for each vertex is
scorei ∈ [0,100] and λi is set to be
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(a) (b)

Fig. 7 The scoring performance comparison between our method and the OP solver: (a) average
scores for 50 trials with uniformly distributed scores, (b) average scores for the scenarios shown in
Figure 6.

λi =

{
scorei/100, if scorei > 20
0, otherwise,

(9)

Specifically, Figure 6(a) and 6(b) are planned paths from the two methods on the
same set of artificially created observation points. The physical size of a node in
the environment represents the significance of information gain (or score). We can
observe that the paths produced from our method transit many high-score way-
points, whereas the centre-of-gravity heuristic transit fewer. Then, we manipulated
the scores so that the score distribution is imbalanced, see Figure 6(c) and 6(d). We
can see that our method can skip those low-score regions and transit only those high
score nodes. Similar behavior can also be observed from the orienteering algorithm.

Next we compare these two approaches on their scoring performance. Figure 7
shows the detailed numerical results for 50 trials with randomly generated locations
and scores. The y-axis is the average score collected, corrected for the path length.
Figure 7(b) shows the average statistics of the two scenarios depicted in Figure 6,
from which we can also conclude that our method is superior in terms of scoring
performance.

5 Conclusions

In this paper, we presented an informative path planning approach for persistent
multi-robot environmental monitoring. Taking into account the spatio-temporal vari-
ations of ocean phenomena, we first developed an information-driven component
that computes the observation points, by minimizing the environmental model’s
prediction uncertainty. Multi-robot paths are then obtained by extending a matching
graph based routing method, which allows the vehicles to transit the obtained infor-
mative observation points in an efficient manner. We validated our method through
simulations with real ocean data. The results show that our method generates in-
formative paths, which are conflict-free for multiple robots, and adaptive to the dy-
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namics of the environment. Our approach is polynomial in the planning horizon,
and linear in the number of robots. Furthermore, we have shown that our approach
outperforms a well-known orienteering problem solver. Thereby we have developed
an approach well suited for persistent monitoring with a multi-robot system.
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