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I. INTRODUCTION

Ocean (environmental) monitoring and sensing allow sci-
entists to gain a greater understanding of the planet and its
environmental processes related to, e.g., physical, chemical
or biological parameters. A key challenge of the envi-
ronmental monitoring lies in the sensing, modeling, and
predicting large-scale and spatially correlated environmental
phenomena, especially when they are unknown and non-
stationary [2]. In practice, many sensing applications require
continuous information gathering in order to provide a good
estimate of the state of the environment at any time [1].

We developed a path planning method that guides an
autonomous underwater vehicle (AUV) to collect ocean data
in the most efficient way. By efficiency we mean the “infor-
mativeness” of collected data (i.e., reduction of phenomena
modeling uncertainty) as well as the minimization of energy
and time used to collect the data. Such a planning framework
is also called informative path planning [1].

We employ a Gaussian Process [4] to model an underlying
phenomenon, and utilize the mutual information between vis-
ited locations and the remainder of the space to characterize
the amount of information collected. Related to the practical
ocean monitoring scenarios, we also consider the AUV’s
action uncertainty due to disturbances caused by the non-
stationary ocean currents, and extend the Markov Decision
Process [3] in continuous space to control AUV’s motion.

We validated the method through extensive simulations
with real ocean data and show that the method not only
maximizes information-gain but also saves time and energy
while exploring the non-stationary ocean.

II. TECHNICAL APPROACH

A. Environment Representations & Methodology Framework

To represent the ocean environment, we discretize the
environment into a grid map. Each grid at a location stores
a mean value that predicts the phenomenon interested as
well as a variance that measures the uncertainty of such
prediction.

We characterize the most informative regions by using
a hierarchical structure, which is illustrated in Fig. 1. We
recursively apply the information-driven planner to get new
batches of observation points at finer resolutions. The process
is repeated until the specified bottom layer of the hierarchy
is reached.
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Fig. 1. (a) A Slocum marine glider used for ocean monitoring; (b)
Hierarchical planning framework consisting of multiple layers.

Then we post-process these observation points with an
existing Travelling Salesman Problem (TSP) solver to gen-
erate a meaningful paths and route the AUV from its
initial location to visit all generated way-points with the
minimized/shortest path length.

Lastly, the low-level motion planner takes into account
the AUV’s motion uncertainty caused by the ocean current
disturbances. We map the discrete state space of MDP to
continuous motion space and integrate the external distur-
bance into the stochastic transition model. The way-points
generated from the information-driven planner are projected
onto a fine grid map representing MDP’s state space, and are
used as local goal states for the purpose of local decision-
making (navigation).

B. Hierarchical Information-Driven Planner

A series of sub-maps is constructed hierarchically, as
illustrated in Fig. 1. The objective on each sub-map is to find
a subset of sampling points of size n, P ∗, which gives us the
most information. It’s equivalent to finding the maximum of
the mutual information between the selected subset and the
rest (unobserved part) of the sub-map, U . Thus the optimal
P ∗ with maximal mutual information is

P ∗ = argmax
P∈X

I(ZP ;ZU ) (1)

where X represents all possible combinatorial sets.
I(ZP ;ZU ) can be formulated with a recursive form and be
solved using dynamic programming:

I(ZP ;ZU ) = I(Zp1
;ZU ) +

n∑
i=2

I(Zpi
;ZU |Zp1:i−1

).

≈ I(Zp1
;ZW\{p1})

+

n∑
i=2

I(Zpi
;ZW\{p1,...,pi}|Zp1:i−1

),

(2)
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Fig. 2. Demonstration of hierarchical planning results with a total of 9
way-points. (a) The top layer of way-points (red) with priors in the corners
(yellow). (b) A tour connecting the way-points (blue) generated from all sub-
maps at the bottom layer. The green dot represents AUV’s starting location.

where W denotes all the sampling points, and pi denotes the
sampling point in stage i.

With the whole set of observation points P ∗k in sub-map k.
We recursively calculate finer observation points at each of
their resided regions in P ∗k until the bottom layer is reached.
The resultant points in the last layer are connected as a
path/tour using any existing TSP solver based on their spatial
descriptions. In this way, the traveling cost is minimized,
and the information gain is also better than the other myopic
greedy scheme.

C. Disturbance-Aware Motion Planner

We design the low-level motion planner based on the
decision-theoretic framework, and develop an adaptive
disturbance-aware planning method built upon the Markov
Decision Process (MDP) [3]. Specifically, the aforemen-
tioned high-level information-driven planner produces a se-
ries of informative path way-points. By setting the succeed-
ing way-points as the short-horizon goal states, the low-level
disturbance-aware motion planner generates policies for the
local guidance.

III. EXPERIMENTAL RESULTS

We validated our method in the scenario of ocean mon-
itoring. The robot used in simulation is an underwater
glider with a simplified kinematic model. The simulation
environment was constructed as a two dimensional ocean
surface and we tessellated the environment into grid maps.
In our experiments, we use salinity and ocean current data
observed in the Southern California Bight region. The raw
data is obtained from ROMS [5].

Information-driven planning results from a two-layer
framework is shown in Fig. 2. The red blobs are the
observation points produced from the first layer, based on
which the second layer generates a series of sampling points.
By connecting with the AUV’s starting location, a TSP tour
is computed, as shown in Fig. 2(b).

Fig. 3(a) depicts the raw ocean current data obtained
from ROMS. With the navigation way-points output from
the hierarchical information-driven planner, the AUV follows
local decisions represented by the MDP’s optimal policy
until it finishes the current batch of way-points. A resul-
tant trajectory of the AUV is illustrated in Fig. 3(b)–3(d).
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Fig. 3. (a) Raw ocean currents predicted by ROMS; (b)–(d) the AUV
follows a series of way-points which cover the most uncertainty regions. The
colormap depicts the variance of phenomenon prediction, where a warmer
color represents a smaller variance. Blue lines are ocean currents and red
arrows denote the MDP action policy.

The colormap in these figures denote the information-gain
(informativeness), from which we can see that the proposed
method produces informative path that explores and covers
most of uncertain regions.

IV. CONCLUSIONS

In this paper, we presented an informative path planning
method for long-term AUV ocean monitoring. The method
takes into account both the spatio-temporal variations of
ocean phenomena and the disturbances caused by the ocean
currents. Specifically, the information-theoretic component
employs a hierarchical structure and plans the most informa-
tive observation way-points; whereas the decision-theoretic
component plans local motions by taking into account the
non-stationary ocean current disturbances.
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