
Multi-Robot Simultaneous Localization and Mapping (Multi-SLAM)

Kai-Chieh Ma, Zhibei Ma

Abstract— In this project, we are interested in the extension
of Simultaneous Localization and Mapping (SLAM) to multiple
robots. By definition, SLAM is the problem where the robot
needs to incrementally build a map of this environment while
using this map to estimate its absolute position simultane-
ously. We successfully implemented both single-robot SLAM
and multi-robot SLAM using particle filters. By comparison
between these two approaches, we showed that the results from
multi-robot SLAM outperform the single-robot SLAM in terms
of localization and mapping quality.

I. INTRODUCTION

Localization and mapping are two important topics in mo-
bile robotic applications. Robot localization is the problem
of estimating a robot’s pose while mapping is the problem of
constructing or learning a map which can be used later for the
robot to localize itself. Interestingly, these two problems can
actually be done simultaneously. In literature, it’s known as
the simultaneous localization and mapping problem (SLAM).
It has been a hot topic in robotics for many years [9].
Motivated by the fact that SLAM problems are typically
formulated as a single robot problem, we want to investigate
the possibilities of multi-robot SLAM (Multi-SLAM). In the
project, we implemented the particle-based filtering algo-
rithms for both single-SLAM and Multi-SLAM and showed
that, in terms of robot pose error and map quality, the
algorithm performs better than the counterpart algorithm of
single SLAM. The details of the approaches, implementation
and experiments are documented comprehensively in this
report accordingly.

II. RELATED WORK

SLAM also known as Concurrent Mapping and Localiza-
tion (CML) is one of the fundamental challenges of robotics,
dealing with the building the map and determining the loca-
tion of the robot simultaneously. In the beginning, both the
map and the vehicle position are unknown, and the robot has
a known kinematic model through the unknown environment,
in which there are several landmarks. Several research groups
and researchers have worked and are currently working
in SLAM, and the most commonly used sensors can be
categorized into laser-based, sonar-based, and vision-based
systems [1].

Robotic map-building can be traced back to 25 years ago,
and since the 1990s probabilistic approaches (i.e. Kalman
Filters (KF), Particle Filters (PF) and Expectation Maxi-
mization (EM)) have become dominant in SLAM. The three

The authors are with the Department of Computer Science at the Univer-
sity of Southern California, Los Angeles, CA 90089, USA. {kaichiem,
zhibeima}@usc.edu

techniques are mathematical derivations of the recursive
Bayes rule. The main reason for this probabilistic techniques
popularity is the fact that robot mapping is characterized by
uncertainty and sensor noise, and probabilistic algorithms
tackle the problem by explicitly modeling different sources
of noise and their effects on the measurements [8].

Many approaches have been proposed to tackle the single-
SLAM problem. Kalman filters are Bayes filters that repre-
sent posteriors using Gaussians. Kalman filters are based on
the assumption that the state transition and the measurement
functions are linear with added Gaussian noise. There are
two types variations of KF in SLAM: the Extended Kalman
Filter (EKF) and its related Information Filtering (IF). Lots
of SLAM approaches are based on EKF [2]. EKF could
handle nonlinearities from the real world, by approximating
the robot motion model using linear functions while the IF
could propagate the inverse of the state error covariance
matrix. There are several advantages that the IF filter has
over the KF: 1. The data is filtered by simply summing
the information matrix and vector, providing more accurate
estimates, rather than the approximation [10]; 2. IF are more
stable than KF. 3. EKF is quite slow when estimating high
dimensional maps.

Beyond these two approaches where posteriors are repre-
sented using Gaussians, an particle-based filtering approach
was proposed. In literature, it’s called Particle Filter (PF),
which is a recursive Bayesian filter that is implemented in
Monte Carlo simulations. It does the estimation by a set of
random point particles representing the Bayesian posterior.
The particles make it possible to handle highly nonlinear
sensors and non-Gaussian noise. However in dealing with
SLAM problems, one fundamental drawback of the classic
PF is that each time it detects a landmark, the computational
complexity will grow, which is not suitable for map-building.
However, there are still several works proposed to deal
with the SLAM problem by using a variant of PF, such as
FastSLAM [5] and FastSLAM2.0 [6]. The comparison of
different filtering algorithms are shown below.

Advantages and Disadvantages of Filtering Approaches
Filter Pros Cons

KF high convergence Gaussian assumption
handle uncertainty slow in high dimension

IF
stable and simple data association problem
accurate need state estimate

PF handle nonlinearities growth in complexity
handle non-Gaussian noise

There are few works which have been done to investigate

on Multi-SLAM. The most famous one is from Andrew
Howard [3], it describes an on-line algorithm for Multi-
SLAM with particle filters.

III. PROBLEM DEFINITIONS

In is section, we concisely give the formal definitions of
the localization, mapping, SLAM and Multi-SLAM prob-
lems, respectively.

A. Localization

Localization is the problem of estimating a robot’s coor-
dinates relative to an external reference frame. Formally, let
x = [x, y, θ]T be the pose of a 2D robot in the external
reference frame. Given the control input u1:t and the sets
of measurements, z1:t, where zt = {z1

t , z
2
t , . . . ,z

N
t } is the

set of N measurements at time t and the known map m, the
localization problem is to find the posterior distribution of
robot poses, p(x0:t|u1:t, z1:t,m), where x0:t is essentially
the trajectory of the robot.

B. Mapping

Mapping is the problem of constructing the map m given
the sets of measurements z1:t and the trajectory of the robot
defined through the sequence of all poses, x1:t. Note that in
mapping problems, the trajectory is assumed to be known and
fully observable so that controls u1:t play no role in mapping.
Mathematically, it’s equivalent to finding the posterior over
the map, p(m|z1:t,x0:t)

C. SLAM and Multi-SLAM

From the definitions of the individual localization and
mapping problem. We can see that an accurate map is needed
for localization while a precise pose estimate is needed for
mapping. Therefore, SLAM is inherently a harder problem
than either localization or mapping since it manages to solve
the both problems simultaneously. For single-SLAM prob-
lems, it’s finding the joint posterior distribution of the map
and robot poses, that is, p(x1:t,m|z1:t,u1:t), where x0 is the
initial pose of the robot. The extension to multiple robots
is as follows: p(x1

1:t,x
2
1:t,m|z1

1:t,u
1
1:t,x

1
0, z

2
1:t,u

2
1:t,x

2
0),

where the superscripts denotes the robot number. (For nota-
tional simplicity, from now on, we will only use two robots
in formulations)

IV. APPROACHES AND METHODS

In our problem settings, we are dealing with 2D ground
robots which are controlled by forward velocity and angular
velocity commands. The pose state of the robot is represented
by its 2D position and orientation. The map we are construct-
ing is landmark-based. Here we represent the whole map as
m which actually contains the 2D position of each landmark
in our environment. In the section, we first mathematically
describe the motion and measurement model for the robots
used in our project, and then we present the algorithms for
both Single and Multi SLAM.

A. Motion Model

In our project, the velocity motion model is used. It
assumes that we can control a robot through two velocities,
a rotational and a translational velocity. Let the translational
velocity at time t be vt, and the rotational velocity ωt. Hence,
we have ut = [vt, ωt]

T . Assume that the robot pose at time
t is given by xt = [x, y, θ]T , and after ∆t time of motion,
the ideal robot will be at xt+1 = [x′, y′, θ′]T . Using simple
kinematics and trigonometry, one can easily show thatx′y′

θ′

 =

xy
θ

+

− vt
ωt

sin θ + vt
ωt

sin(θ + ωt∆t)
vt
ωt

cos θ − vt
ωt

cos(θ + ωt∆t)

ωt∆t

 (1)

By ”ideal” we mean the robot motion is noise-free, but
in reality, robot motion is subject to noise. Therefore the
actual velocities always differ from the commanded ones by
a noise term. More precisely, we assume the actual velocities
are given by [

v̂t
ω̂t

]
=

[
vt
ωt

]
+

[
εα1v2t+α2ω2

t

εα3v2t+α4ω2
t

]
(2)

Here εb2 is a zero-mean Gaussian error with variance b2.
Thus in this model, the true velocity equals the commanded
velocity plus some small, additive error (noise). Here we
assume the standard deviation of the error is proportional
to the commanded velocity. The parameters α1 to α4 (with
αi ≥ 0 for i = 1, . . . , 4) are robot-specific error parameters.
Intuitively, the larger the noise, the larger these parameters
should be. The motion equation given above implies the
radius of the circular segment and the distance traveled is
influenced by the control noise. However, the fact that the
trajectory is circular is still not affected. The assumption
of circular motion can lead to a degeneracy [9]. Therefore,
to generalize our motion model accordingly, we assume the
robot also performs a rotation γ̂t at its final pose. Thus, the
θ′ in Eq. (1) is replaced by

θ′ = θ + ω̂t∆t+ γ̂t∆t (3)

with γ̂t = εα5v2t+α6ω2
t
. Again, α5 and α6 are the robot-

specific parameters determining the variance of the additional
rotational noise. In sum, the final motion model is as follows:x′y′

θ′

 =

xy
θ

+

− v̂t
ω̂t

sin θ + v̂t
ω̂t

sin(θ + ω̂t∆t)
v̂t
ω̂t

cos θ − v̂t
ω̂t

cos(θ + ω̂t∆t)

ω̂t∆t+ γ̂t∆t

 (4)

B. Measurement Model

In our project, the feature-based measurement model is
used. It assumes the features have been extracted from the
raw measurements and all later calculation are based on
these features. The key advantage of this model is the re-
duction of complexity since the feature space is usually low-
dimensional. In particular, the features used in our project are
called landmarks. They are physical objects in the workspace
for robot navigation. The details of feature extraction will be
discussed in V-A. Here we simply assume the feature we get
contains the range and the bearing of the landmark relative

to the robot’s local coordinate frame. We also assume that
the correspondence of landmarks is known and exact after
feature extraction (That is, no data association issues in our
implementation.). Recall that the map we are constructing is
a set of N features, m = {m1,m2, . . . ,mN}, where mi is
the coordinate in the global frame. The relation between the
local frame feature and the global coordinate can be derived
using standard geometric laws. Specifically, the measurement
model of i-th feature at time t with its corresponding i-th
landmark in the map is given by[

rit
φit

]
=

[√
(mi,x − x)2 + (mi,y − y)2

atan2(mi,y − y,mi,x − x)− θ

]
+

[
εσ2
r

εσ2
φ

]
(5)

Similar to previous section where the model is subject to
noise, the model is added with zero-mean Gaussian noise,
εσ2
r
, εσ2

φ
with variances σ2

r and σ2
φ, respectively. Note that

σ2
r and σ2

φ are also part of robot-specific parameters.

C. Single FastSLAM Algorithms

In this subsection, we briefly describe the FastSLAM
algorithm for single SLAM problems [7]. It’s based on Rao-
Blackwellized particle filter, which is a variant of PF. Con-
ceptually, Rao-Blackwellized particle filtes uses particles to
represent the posterior over some variables, along with Gaus-
sians (or some other parametric distributions) to represent all
other variables. Concretely, FastSLAM uses particle filters
for estimating the robot path while using multiple EKF to
estimate map features locations individually. The advantage
of FastSLAM over other SLAM algorithms arises from the
fact that they can cope with non-linear robot motion models.
This advantage is more important when the kinematics are
highly non-linear, or when the pose uncertainty is relatively
high. One other key property of FastSLAM is that it solves
both the full SLAM problem and the on-line SLAM problem.
That is, the FastSLAM is formulated to calculate the full path
posterior and it also estimates one pose at-a-time.

Now we describe how a particle is represented and updated
in details. Each particle contains an estimated robot pose,
denoted by x

[k]
t , a set of Kalman filters with mean µ[k]

i,t and
covariance Σ

[k]
i,t , one for each feature mi in the map, and

a weight w[k]. Here [k] is the index of the particle. With
this particle representation, the basic steps of the FastSLAM
algorithm are as follows. (Assuming there are M particles
in total.)

• Do the following M times:
1) Retrieval: Retrieve a pose x

[k]
t−1 from the previous

particle set Yt−1.
2) Prediction: Sample a new pose x

[k]
t ∼

p(xt|x[k]
t−1,ut).

3) Measurement update: For each observed feature, zit,
incorporate it into the EKF by updating the mean µ[k]

i,t

and covariance Σ
[k]
i,t .

4) Importance weight: Calculate the importance weight
w[k] for the new particle.

• Resampling: Sample, with replacement, M particles,
where each particle is sampled with a probability pro-
portional to w[k]

The key property to the successful approximation of pos-
teriors lies in the step of calculating importance weight and
resampling. Intuitively, the importance weight is calculated
to represent the likelihood of the particle based on the current
measurements. In the resampling step, particles with higher
weights are more likely to be preserved while particles with
lower weights are more likely to be eliminated. In this way,
we are continuously approximating the posteriors with those
most likely particles. This property also implies that with
larger number of particles, we can approximate the posteriors
more accurately.

D. Multi FastSLAM Algorithms

In this subsection, we show how the FastSLAM can be
extended to handle multiple robots. In fact, provided that the
initial robot poses are known, the single SLAM algorithm
can be generalized to handle multiple robots. The goal is
to simultaneously estimate the posteriors over two robot
trajectories and one common map. Mathematically, it’s

p(x1
1:t,x

2
1:t,m|z1

1:t,u
1
1:t,x

1
0, z

2
1:t,u

2
1:t,x

2
0) (6)

= p(x1
1:t,x

2
1:t|z1

1:t,u
1
1:t,x

1
0, z

2
1:t,u

2
1:t,x

2
0) (7)

p(m|x1
1:t,x

2
1:t, z

1
1:t,u

1
1:t,x

1
0, z

2
1:t,u

2
1:t,x

2
0)

= p(x1
1:t|z1

1:t,u
1
1:t,x

1
0, z

2
1:t,u

2
1:t,x

2
0) (8)

p(x2
1:t|z1

1:t,u
1
1:t,x

1
0, z

2
1:t,u

2
1:t,x

2
0)

p(m|x1
1:t,x

2
1:t, z

1
1:t,u

1
1:t,x

1
0, z

2
1:t,u

2
1:t,x

2
0)

= p(x1
1:t|z1

1:t,u
1
1:t,x

1
0)p(x2

1:t|z2
1:t,u

2
1:t,x

2
0) (9)

p(m|x1
1:t,x

2
1:t, z

1
1:t,u

1
1:t,x

1
0, z

2
1:t,u

2
1:t,x

2
0)

= p(x1
1:t|z1

1:t,u
1
1:t,x

1
0)p(x2

1:t|z2
1:t,u

2
1:t,x

2
0)p(m|x1

0:t,x
2
0:t)
(10)

From Eq. (6) to Eq. (7), the basic property of conditional
probability is applied to decouple m from the other terms.
From Eq. (7) to Eq. (8), we assume that these two trajectories
are independent. From Eq. (8) to Eq. (9), we assume that the
motion controls, measurements and the initial pose of one
robot do not depend on the pose of the other. From Eq. (9) to
Eq. (10), the Markov assumption is applied. Markov assump-
tion postulates that past and future data are independent if
one knows the current state xt. Therefore, z1

1:t,u
1
1:t, z

2
1:t,x

2
0

are discarded given that x1
0:t,x

2
0:t are known. Based on the

derivation, the particle filter for Multi-SLAM can be con-
structed as follows. Now each particle is a tuple containing
(x

1[k]
t ,x

2[k]
t ,m[k], w

[k]
t). Following the framework in IV-

C. The prediction step is now generalized to predict both
x
1[k]
t and x

2[k]
t . The measurement update step remains the

same except that we now have two sets of measurements
coming from two robots. As for the importance weights,
since we have factored the posterior of the joint probability,
the importance weight is simply the multiplication of each
term in single-SLAM cases. The detailed algorithm is pseudo
coded in in Alg. IV-D. For the detailed derivation of the EKF
updates on each landmark, please refer to the book [9].

Algorithm 1 Multi-SLAM Algortihm
1: procedure MULTI-SLAM(Z1

t ,Z
2
t ,u

1
t ,u

2
t , Yt−1)

2: for k = 1 to M do
3: retrieve

〈
x
1[k]
t−1,x

2[k]
t−1,

〈
µ
[k]
1,t−1,Σ

[k]
1,t−1

〉
, . . . ,

〈
µ
[k]
N,t−1,Σ

[k]
N,t−1

〉〉
// N is number of landmarks

4: x
1[k]
t ∼ p(x1

t |x
1[k]
t−1,u

[1]
t)

5: x
2[k]
t ∼ p(x2

t |x
2[k]
t−1,u

[2]
t)

6: for each feature z in Z1
t do

7: if feature z never seen before then
8: µ

[k]
i,t = h−1(z,x

1[k]
t)

9: H = h′(x
1[k]
t , µ

[k]
i,t)

10: Σ
[k]
i,t = H−1Qt(H

−1)T

11: w1[k] = p0
12: else
13: ẑ = h(µ

[k]
i,t−1,x

1[k]
t)

14: H = h′(x
1[k]
t , µ

[k]
i,t−1)

15: Q = HΣ
[k]
i,t−1H

TQ−1 +Qt

16: K = Σ
[k]
i,tH

TQ−1

17: µ
[k]
i,t = µ

[k]
i,t−1 +K(z − ẑ)

18: Σ
[k]
i,t = (I −KH)Σ

[k]
i,t−1

19: w1[k] = |2πQ|− 1
2 exp(− 1

2 (z −
ẑ)TQ−1(z − ẑ))

20: end if
21: end for
22: for each feature z in Z

[2]
t do

23: // similar to the above
24: end for
25: for all other unobserved landmarks i do
26: µ

[k]
i,t = µ

[k]
i,t−1

27: Σ
[k]
i,t = Σ

[k]
i,t−1

28: end for
29: end for
30: Yt = ∅
31: for i = 1 to M do
32: draw random k with probability ∝ w1[k] ∗ w2[k]

33: add
〈
x
1[k]
t ,x

2[k]
t ,

〈
µ
[k]
1,t,Σ

[k]
1,t

〉
, . . . ,

〈
µ
[k]
N,t,Σ

[k]
N,t

〉〉
34: end for
35: end procedure

V. IMPLEMENTATION

A. SLAM Dataset

In our project, we use the open dataset accquired from
[4]. It includes dataset which are suitable to do experiments
on single-SLAM and multi-SLAM. Each dataset contains
odometry (instead of control inputs, ”odometry” may be a
misused of terms in their description of the dataset) and
(range and bearing) measurement data from 5 robots, as
well as accurate groundtruth data for all robot poses and 15
landmark positions. Each robot and landmark has a unique
identification number encoded as a barcode (with known
dimensions). Images captured by the camera on each robot
(at a resolution of 960×720) are rectified and processed
to detect the barcodes. The encoded identification number

(a)

(b)

Fig. 1. (a) The environment where the dataset was collected; (b) Robot
platforms used to collect the dataset.

as well as the range and bearing to each barcode is then
extracted. The camera on each robot is conveniently placed
to align with the robot body frame.

The dataset is collected in the indoor environment shown
in Fig. 1(a). Robots move to randomly preset waypoints in a
15m × 8m indoor space while logging odometry data, and
range-bearing observations to landmarks and other robots.
Fig. 1(b) shows the experimental robot. This robot is the
iRobot Create with 34cm in diameter.

B. ROS

Considering the possibility of extending our work to simu-
lations or real robots, we decided to use ROS as the develop-
ment tools and the infrastructure of our system. The Robot
Operating System (ROS) is a set of software libraries and
tools that help build robot applications. From drivers to state-
of-the-art algorithms, and with powerful developer tools. And
it’s all open source. The node diagram of our project is shown
in Fig. 2. The starting node is data reader, which reads the
data from the open dataset, and publishes the processed data
to slam runner, in which multiple SLAM algorithms are
implemented and run. Finally, slam runner publishes the
results of SLAM algorithms to points and lines for post-
processing and then points and lines publishes at most 5
groundtruth paths and 5 SLAM paths to rviz for dynamic
visualization.

C. Visualization

For convenience, we use the rviz tool for our fi-
nal visualization. Rviz (ROS visualization) is a 3D vi-
sualizer for displaying sensor data and state information
from ROS. We use nav msgs/Path in rviz to show the
paths, visualization msgs/MarkerArray to show the

Fig. 2. The node structure of our project shown by using the rqt graph
command

landmarks, and geometry msgs/PoseArray to show the
particles.

VI. RESULTS AND EVALUATION

We conducted several experiments to validate both Single-
SLAM and Multi-SLAM algorithms, all of which were
implemented in C++. The experiments were performed on
a system with an Intel i5 2.2GHz processor and 4GB RAM.

A. Dead-reckoning method vs. Single-Robot SLAM

The trajectory results of Single-SLAM w/o incorporating
measurements are shown in Fig. 3. The blue dots are
groundtruth landmarks. The green path is the groundtruth
path of the robot, while the purple one is the path that we
calculated from the single-SLAM. The light-blue cluster is
the approximated distribution of the robot pose estimated
using particles. Fig. 3(a) shows the result of the trajectory
without incorporating the measurement information. We can
see that without doing it (also known as the dead-reckoning
method), the error from the noisy robot motion eventually
accumulates unboundedly compared to the Single-SLAM
algorithm shown in Fig. 3(b). The numerical comparison is
also shown in Fig. 4(a). To show the applicability of Single-
SLAM, the numerical error of Single-SLAM is further shown
in Fig. 4(b). The average error over 1400 frames (roughly 5
mins in real time) is 0.6m, which is acceptable considering
robot’s diameter is 0.34m. We also measured the mapping
quality in terms of the landmark position error(the distance
between our estimated landmark position and the groundtruth
landmark position) in Fig. 4(c). The average error over 15
landmarks is about 0.6m and we can see that as time goes
by, the error gradually converges.

B. Single-SLAM vs. Multi-SLAM

The experiments on multi-SLAM are also conducted.
Fig. 5 is the result of 3 robots SLAM path. We can see that
the resulting trajectories of each robot are still close to the
groundtruth trajectories. Fig. 6(a) shows the numerical tra-
jectory error between Single-SLAM and Multi-SLAM. The
performance on multi-SLAM is better than single-SLAM in

(a)

(b)

Fig. 3. (a) Single-robot trajectory without incorporating measurements
(dead-reckoning method); (b) Single-robot SLAM with measurements in-
corporated

terms of the average error over the whole trajectory. For
Multi-SLAM, it’s about 0.42m, while it’s 0.6m roughly for
Single-SLAM. The Multi-SLAM also performs better on the
map construction, which is shown in Fig. 6(b). The con-
verged error in Multi-SLAM is only 0.5m compared to 0.7m
in Single-SLAM. From the experiment, we’ve shown that
multi-SLAM’s performance is better than single-SLAM’s
performance.

VII. STRENGTHS AND WEAKNESSES

A. Strengths and weaknesses of the Multi-SLAM algorithm

From the derivation in section IV-D, we see that the
algorithm is an exact extension from single-SLAM algorithm
without approximations. The experiment results in section VI
also show that the multi-SLAM can help improve the in-
dividual localization and mapping. However, there are as-
sumptions which might not always be true in real world and
have to be taken into account. For example, the assumption
that the measurements of one robot do not depend on other
poses of robots may not hold anymore if one robot can
partially occlude the measurements and affect the accuracy
of data association of the measurements. Fortunately in the
dataset, the issue does not happen because the identity of
each measurement is detected using barcodes, and therefore
can be treated as exact values. Another issue that might arise
from the algorithm is that if one robot’s uncertainty is too

(a) (b) (c)

Fig. 4. (a) Comparison of path error between dead-reckoning method and single-robot SLAM; (b) Single-robot SLAM path error; (c) Map quality in
terms of landmark position error.

Fig. 5. Multi-robot SLAM path.

(a)

(b)

Fig. 6. (a) Comparison of path error between single-SLAM and Multi-
SLAM; (b) Comparison of landmark error between single-SLAM and Multi-
SLAM.

large, the performance could be worse because the ”polluted”
information is incorporated. However this can actually be
mitigated by tuning the robot-specific parameters described
in section IV-A and section IV-B to be larger in order to
reflect the level of uncertainty of this particular robot.

B. Strengths of our project

We successfully implemented both single-robot SLAM
and multi-SLAM, and use rviz to do the visualization. Our
result is acceptable with small deviated from the groundtruth.

Our project is based on ROS, which is readily extensible
for our future work, such as the simulation(Gazebo) and real
robots,

The visualization of our project is clear and easy to
understand. The links of our demos are in the APPENDIX
II.

C. Weaknesses of our project

In our experiment, we only use the the same parameter
in motion model and measurement mode due to the time
pressure. It would be better if we could do more experiments
with different parameters.

VIII. SUMMARY

In our project, we implemented particle-based filtering
algorithms for Single and Multi SLAM and showed that, in
terms of robot pose and map (landmark-based) quality, the
Multi-SLAM algorithm performs better than the counterpart
algorithm of Single-SLAM. For future work, we want to do
data-driven parameter optimization for both motion model
and measurement model in order to improve the performance
of SLAM algorithms. Active exploration could be also
another future work we can work on. Currently, the paths
traversed by the robots in the dataset are randomly preset,
meaning the mapping space is not actually explored in an
efficient way. To achieve full autonomy, the robot should
autonomously plan a suitable motion policy in order to visit
unknown areas while minimizing the uncertainty on its pose.
Therefore, active exploration planning algorithms are also
promising as a direction of research.

APPENDIX I
CODE

Kai-Chieh Ma, Zhibei Ma, 2016, Github repository,
https://github.com/markcsie/slam_project

APPENDIX II
VIDEOS

All the demos of our project are created by rviz in ROS.
The demo of single-robot SLAM:
https://www.dropbox.com/s/

322l1n7eunbttn6/single.mp4?dl=0
The demo of multi-robot SLAM with 3 robots:
https://www.dropbox.com/s/

ts1870vq3u35576/multi3.mp4?dl=0
The demo of multi-robot SLAM with 5 robots:
https://www.dropbox.com/s/

7n0uvcxir6ca9rc/multi5.mp4?dl=0

APPENDIX III
RESPONSIBILITY

Kai-Chieh Ma: Single SLAM, Multi Robot SLAM, ROS.
Zhibei Ma: Data collection, Single SLAM, RVIZ Visual-

ization.

REFERENCES

[1] J. Aulinas, Y. Petillot, J. Salvi, and X. Lladó. The slam problem:
A survey. In Proceedings of the 2008 Conference on Artificial
Intelligence Research and Development: Proceedings of the 11th
International Conference of the Catalan Association for Artificial
Intelligence, 2008.

[2] A. J. Davison and D. W. Murray. Simultaneous localization and map-
building using active vision. IEEE Trans. Pattern Anal. Mach. Intell.,
24(7):865–880, July 2002.

[3] A. Howard. Multi-robot simultaneous localization and mapping using
particle filters. In Proceedings of Robotics: Science and Systems,
Cambridge, USA, June 2005.

[4] K. Y. Leung, Y. Halpern, T. D. Barfoot, and H. H. Liu. The utias multi-
robot cooperative localization and mapping dataset. The International
Journal of Robotics Research, 30(8):969–974, 2011.

[5] M. Montemerlo, S. Thrun, D. Koller, and B. Wegbreit. FastSLAM:
A factored solution to the simultaneous localization and mapping
problem. In Proceedings of the AAAI National Conference on Artificial
Intelligence, 2002.

[6] M. Montemerlo, S. Thrun, D. Koller, and B. Wegbreit. FastSLAM 2.0:
An improved particle filtering algorithm for simultaneous localization
and mapping that provably converges. In Proceedings of the Sixteenth
International Joint Conference on Artificial Intelligence (IJCAI), 2003.

[7] M. Montemerlo, S. Thrun, D. Koller, B. Wegbreit, et al. Fastslam:
A factored solution to the simultaneous localization and mapping
problem. In Aaai/iaai, pages 593–598, 2002.

[8] S. Thrun. Robotic mapping: A survey. In G. Lakemeyer and B. Nebel,
editors, Exploring Artificial Intelligence in the New Millenium. Morgan
Kaufmann, 2002. to appear.

[9] S. Thrun, W. Burgard, and D. Fox. Probabilistic Robotics. Intelligent
robotics and autonomous agents. MIT Press, 2005.

[10] S. Thrun and Y. Liu. Multi-robot slam with sparse extended informa-
tion filters. Springer, 2003.

https://github.com/markcsie/slam_project
https://www.dropbox.com/s/322l1n7eunbttn6/single.mp4?dl=0
https://www.dropbox.com/s/322l1n7eunbttn6/single.mp4?dl=0
https://www.dropbox.com/s/ts1870vq3u35576/multi3.mp4?dl=0
https://www.dropbox.com/s/ts1870vq3u35576/multi3.mp4?dl=0
https://www.dropbox.com/s/7n0uvcxir6ca9rc/multi5.mp4?dl=0
https://www.dropbox.com/s/7n0uvcxir6ca9rc/multi5.mp4?dl=0

	Introduction
	Related Work
	Problem Definitions
	Localization
	Mapping
	SLAM and Multi-SLAM

	Approaches and Methods
	Motion Model
	Measurement Model
	Single FastSLAM Algorithms
	Multi FastSLAM Algorithms

	Implementation
	SLAM Dataset
	ROS
	Visualization

	Results and evaluation
	Dead-reckoning method vs. Single-Robot SLAM
	Single-SLAM vs. Multi-SLAM

	Strengths and weaknesses
	Strengths and weaknesses of the Multi-SLAM algorithm
	Strengths of our project
	Weaknesses of our project

	Summary
	Appendix I: Code
	Appendix II: Videos
	Appendix III: Responsibility
	References

