
 1

Abstract
In this project, we construct a system concentrating on maze
exploring, map making, planning, and wall avoidance using
Pioneer 3DX. Given a simple maze without loops (for
simplicity). The robot is able to travel all possible roads or
forks until it gets to the end. After reaching the end for the
first time, the robot would memorize the map and do path
planning, so, for the second, it would go to the end point
without going to the wrong way. Besides, whenever the robot
is traveling in the maze, it would constantly correct its
direction so as not to hit the wall.

I. INTRODUCTION
bout this final project, we first search the video about
robots on the internet to decide our topic. We find some

amazing videos about robots, but we think it’s too difficult for
us. However, we find an interesting video about the
MicroMouse exploring a maze. We thought it is an interesting
topic and we have the ability to accomplish this topic. And
then, there are four Pioneers for us to do our final project.
Therefore, we can use Pioneer as the MicroMouse. By this
way, we decide our topic, exploring the maze by pioneer, for
the final project of this course.

II. SYSTEM OVERVIEW

A. Main Control System
Controlling the robot’s velocity, rotational velocity,

direction according to some criteria, for example, going
straight, making a turn, avoidance of hitting the wall, and so
on.

B. Map Making and Path Planning System
Considering the maze we are working on, we decide to use

topological map to represent it. For each turning point (except
for dead roads), we create a node with 4 links (one for each
direction) linking to the other nodes. Hence, all nodes form a
topological map. After the completion of the map, we would
apply our path planning to it to find the most efficient path.
The details of the map making and path planning will be
discussed in the later Methodology section.

C. Robot Vision System
Because we have to find a method to decide whether the

Pioneer reaches the goal, we decide to use the camera, which
is connected to the computer as the vision of Pioneer. Besides,
we use a red object as the goal of our maze. Therefore, when
the Pioneer walks to the goal of our maze, the camera will see
the red object and the computer will let the Pioneer to stop.
This is the only thing that our robot vision does.

D. Sensing System
For robots, sensing is critically important. In this project,

we use Pioneer 3DX’s built-in sonar as our sensing device.
We divided the sensing area into three parts, front, left, right.
For each area, the sonar system returns the range to the nearest
obstacle in the area. If the reading is higher than 5000, it
means it doesn’t sense anything in the feasible area of the
sonar.

III. METHODOLOGY
For the map exploring part, we first construct a topological

map while exploring the map. Whenever the robot makes
turns and the point has not been visited before, the robot will
add a new node on the turning point, which is connected to the
previous node with directions labeled.

A. Fundamental Robot Control Behaviors
“Turn Left”, “Turn Right”, “Turn Around” are the basic

behaviors in our system. We use “stop and turn” concept to
implement these behaviors, and the 90-degree turning is
implemented by using the Pioneer-built-in “setHeading()”
function.

B. Map Making
As mentioned before, the map is represented by topological

map. The detailed idea is to construct a 4-direction linked list
data structure.

Node Information：
1. Number
2. X, Y coordinates
3. 4 directional node pointers
4. Several Boolean flags
Node Creating Procedures：

Exploring the Maze with Pioneer 3DX
劉彥均, 王鈞奕, 馬凱傑

National Taiwan University, Dept. of CSIE

Taipei, Taiwan, R.O.C.

A

 2

1. In the beginning of the maze exploring, we create the
first node, marking it as the “starting node” and
“previous node”.

2. Once we encounter a fork, we create another node and
link it with the “previous node” with the direction
according to the robot’s current heading direction and,
remarking the newly created node as the “previous
node”.

3. Repeat 2 until the robot reaches the end and stops.

C. Fork Road Detection:
 We use sonar to measure the distance in front, on right

side, and on left side. When the increasing distance on left side
or right side is larger than a certain value (we set the value to
be 300, which is 30 cm), then the fork road occur. If the robot
doesn’t encounter fork road, it will go straight.

D. DFS Search:
Like the original DFS search, the robot will search the fork

road and its branch first. To remember the road the robot has
traversed before, and not to construct the node at the same
point twice, we create several flags to aid the robot accomplish
DSF search. The detail about the flags is listed as below.

1. Dead road flag：
To remember the road visited before is a “dead road”, we

create four boolean variables in the node structure (northdead,
westdead, southdead, eastdead), and label the dead roads by
label_deadroad(NodePtr sPtr, int angle) function. Therefore,
the robot will not travel the dead road twice by checking the
values of the four flags.

2. deadroad_occur flag：
This is a flag to help the robot make different decisions

when exploring the maze
i. The timing to change the value of deadroad_occur

At first, this flag is set to be false.When the robot
encounter a dead road, we set deadroad_occur to be
true.

When deadroad_occur is true and the robot found
new branches it hasn’t visited before, we set
deadroad_occur to be false.

We set the deadroad_occur flag to be true after the
robot encountered a dead road and turned around, that
is, there is no road either in front, or on the left or right
side.

ii. When deadroad_occur flag is false

Make turns and create nodes whenever the robot
detects a new branch. Go on exploring the maze.

iii. When deadroad_occur flag is true

When the robot goes back to the previous node, it
has to consider two conditions:

Condition 1：

If there exist some other roads except the source
road and is not a dead road, cancel deadroad_occur
flag and go on to ii. Part.

Condition 2：
If there doesn’t exist any road except source road

and dead road, go back to the source road and label
this road as dead road. deadroad_occur flag is still true.

E. Path Planning
Before the beginning of the second round, we would do path

planning for the robot on the map built previously. The basic
idea is to use Depth First Search to traverse the map.

Path Planning Procedures：
1. First check if we reach the end by the number of the node

we are at right now. If yes, set the global “found flag”
true, save the current node information in a global list
array and return, else, do “Path Planning Procedures” on
the next node by the order of east, south, west, north.

2. At this point, the neighboring nodes have been traversed,
if the “found flag” is true, save the current node
information in the list array, else, simply return.

After these procedures, the global list array is the path
information we expect to have.
Note： In order to preventing loops in the recursive
procedures, we mark it as “checked” to indicate we’ve been
to this node before.

F. Wall Avoidance Technique
Because the accumulated errors due to every motion like

“Turn Left” or “Turn Right”, the robot would be more likely
to hit the walls after some time. Therefore we have to apply
the technique to make the robot run smoothly.

Wall Avoidance Procedures：
1. Use the readings provided by the sonar sensing system, if

the reading is below a threshold value (indicating the
robot is too close to the wall), make a slight turn by
differentiating the speeds of the two wheels, else, do
nothing and return.

2. Since the previous turn might cause the robot to head to
the wrong direction, we have to correct it. In order to
correct it, this procedure is also implemented by the
Pioneer-built-in “setHeading()” function.

G. Determining whether Reaching the Goal
At this point, the neighboring nodes have been traversed, if

the “found flag” is true, save the current node information in
the list array, else, simply return. In this part, we use the image
captured by camera to determining whether the Pioneer reach
the goal of our maze. Because we use the red object as the
goal of our maze, we need to distinguish between the red
pixels and the other pixels in the image. Therefore, we use the
“openCV” as our tool to process the image. However, instead
of reading the whole image’s pixels, we only read the pixels in
the central area of the image. Because if we read all the pixels
to deciding whether there is a red object, it will see the red
picture on the wall of our maze as the goal. Then, the Pioneer
will stop. As a result, we only read the central area of the
image, because we can roughly see it as the road in the maze.
By this way, when the Pioneer exploring the maze, if it see a
red object on its way, it will stop. Besides, in order to avoid

 3

some reading error, we set a threshold to decide whether it is a
red object. If the number of red pixels more than 20, we can
see it as we find the goal.

H. Determining between Red Pixels and Others
As a result of using red object as the goal, we need to decide

whether a pixel is red or not. We use the method of turning
RGB to HSI. For every pixel, we can use the value of RGB
and a special function to turn it into HSI. The symbol H stands
for the color in our world. And we have already know that the
H value of red pixels is approximately from 345 to 360.
Therefore, if we use RGB of certain pixel to get a value H
from 345 to 360 by the function, we can see it as red pixel.
And the function is as follow:

The RGB value can be derived from the tool “openCV”. By

this way, we can use this to determining whether reaching the
goal.

IV. SIMULATION AND EXPERIMENT
This following image is one of the mazes we have

experimented on.

First, we put the Pioneer at the START of the maze and then
start our program. It will go straight until it encounters the first
fork. At the first fork, because turning left is the only way the
Pioneer can go, it will absolutely turn left. Then, it will
encounter next fork after going a while. At this fork, it may
turn right or left. If it turns right first, it can reach the goal
without any errors. However, if it turns left first, it will get the
correct way by doing several ”trial and error”. It will
encounter the dead road in the left way. Then, it turns around
and goes to the same fork again. And it will turn left again to
go to the front way of the fork. Then, it will encounter the
dead road again. It turns around again and goes to the same
fork again. This time it turns left to go to the right way of the
fork because the other ways, except for the source way, are
labeled dead. Then, it can see the red object by turning left and
turning right. After finding the red object, it will see it as the
goal and then stop. Then, we can put the Pioneer to the start
again. It will find the goal smoothly without “trial and error”.
It will turn left, turn right, turn left, and turn right in sequence.

After these actions, the program will stop.

V. CONCLUSION
This is our first attempt to use a robot to finish a specific

task. Therefore, we set several rules on the model of
environment to make the task easier. For example, we assume
the distance between the robot and the wall of the maze is
within a certain range, and we assume the maze is well-formed
and won’t have holes or chinks on the wall. Those rules make
it easier for us to accomplish our goal.

Still, there exist some more for us to improve. We list them
as follows

A. Speed of the Robot
Now we adopt a certain constant speed for the robot to

explore the map. However, to make the robot explore the map
in a more efficient way, we should let the robot dash if there is
no obstacle in front and we should brake the robot whenever
the robot has to make turns.

B. Better Distance Measured Device
Now we us sonar sensor for distance measuring, but there

are some disadvantages for using sonar, like it can only
measure short distance, and error might occur because of
reflection. It will be better to use laser sensor.

C. Loop Situation in a Maze
We haven’t handled the loop situation. However, we have

already come up with a possible solution. Since we have
already record the x, y coordinate values when we construct
the node, we can check if the node we construct is visited
before. The difficulty is that the x, y values may not be
accurate because of accumulated error resulted from friction.
Therefore, we have to use some sensor to help us locate the
robot to fix these errors.

ACKNOWLEDGMENT
For this project, we would like to thank our teacher

assistants, 黃國楨 and 曾士桓, for providing the Pioneer 3DX,
camera and several tools for building the maze and their
enthusiasm for helping us. Besides, we’d like to thank our
teacher, professor 傅立成, for his passion in teaching us.

REFERENCES
[1] William K. Pratt, Digital Image Processing, 4th,

Wiley-Interscience,2007.
[2] Thomas H. Cormen, Charles E. Leiserson, Ronald L.

Rivest, Clifford Stein, Introduction to Algorithms, 3rd,
The MIT Press, 2009.

[3] Robin R. Murphy, An Introduction to AI Robotics, 1st,
The MIT Press, 2000.

 4

JOB DISTRIBUTION

A. 劉彥均：Robot Vision, Image Processing

B. 王鈞奕：Maze Exploring

C. 馬凱傑：Fundamental Robot Control Behaviors, Map
Making, Wall Avoidance

Our jobs are well divided!

